Fernández-Cara, Enrique; González-Burgos, Manuel; Guerrero, Sergio; Puel, Jean-Pierre Null controllability of the heat equation with boundary Fourier conditions: the linear case. (English) Zbl 1106.93009 ESAIM, Control Optim. Calc. Var. 12, 442-465 (2006). Summary: In this paper, we prove the global null controllability of the linear heat equation completed with linear Fourier boundary conditions of the form \({\partial y\over\partial n} + \beta\,y = 0\). We consider distributed controls with support in a small set and nonregular coefficients \(\beta=\beta(x,t)\). For the proof of null controllability, a crucial tool will be a new Carleman estimate for the weak solutions of the classical heat equation with nonhomogeneous Neumann boundary conditions. Cited in 68 Documents MSC: 93B05 Controllability 35K20 Initial-boundary value problems for second-order parabolic equations 49J20 Existence theories for optimal control problems involving partial differential equations Keywords:controllability; heat equation; Fourier conditions × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] V. Barbu , Controllability of parabolic and Navier-Stokes equations . Sci. Math. Jpn 56 ( 2002 ) 143 - 211 . Zbl 1010.93054 · Zbl 1010.93054 [2] A. Doubova , E. Fernández-Cara and M. González-Burgos , On the controllability of the heat equation with nonlinear boundary Fourier conditions . J. Diff. Equ. 196 ( 2004 ) 385 - 417 . Zbl 1049.35042 · Zbl 1049.35042 · doi:10.1016/j.jde.2003.09.002 [3] C. Fabre , J.P. Puel and E. Zuazua , Approximate controllability of the semilinear heat equation . Proc. Roy. Soc. Edinburgh 125A ( 1995 ) 31 - 61 . Zbl 0818.93032 · Zbl 0818.93032 · doi:10.1017/S0308210500030742 [4] E. Fernández-Cara and E. Zuazua , The cost of approximate controllability for heat equations: the linear case . Adv. Diff. Equ. 5 ( 2000 ) 465 - 514 . Zbl 1007.93034 · Zbl 1007.93034 [5] A. Fursikov and O.Yu. Imanuvilov , Controllability of Evolution Equations . Lecture Notes no. 34, Seoul National University, Korea, 1996. MR 1406566 | Zbl 0862.49004 · Zbl 0862.49004 [6] O.Yu. Imanuvilov and M. Yamamoto , Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications , Dekker, New York. Lect. Notes Pure Appl. Math. 218 ( 2001 ). MR 1817179 | Zbl 0977.93041 · Zbl 0977.93041 [7] G. Lebeau and L. Robbiano , Contrôle exacte de l’equation de la chaleur (French). Comm. Partial Differ. Equat. 20 ( 1995 ) 335 - 356 . Zbl 0819.35071 · Zbl 0819.35071 · doi:10.1080/03605309508821097 [8] D.L. Russell , A unified boundary controllability theory for hyperbolic and parabolic partial differential equations . Studies Appl. Math. 52 ( 1973 ) 189 - 211 . Zbl 0274.35041 · Zbl 0274.35041 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.