Chitour, Y. Path planning on compact Lie groups using a homotopy method. (English) Zbl 1106.93320 Syst. Control Lett. 47, No. 5, 383-391 (2002). Summary: In this paper, we address the issue of solving the motion planning problems (MPP for short) for a class of left-invariant control systems \(\Sigma\) whose state spaces are semisimple compact Lie groups. The sub-Riemannian metrics induced by the dynamics of \(\Sigma\) admit nontrivial abnormal extremals. This fact a priori represents an obstruction for the procedure we use to tackle the MPP, which consists of a homotopy (or continuation) method. We are however able to provide complete answers for the MPP. Cited in 2 Documents MSC: 93C25 Control/observation systems in abstract spaces 53C17 Sub-Riemannian geometry 70F25 Nonholonomic systems related to the dynamics of a system of particles 93C85 Automated systems (robots, etc.) in control theory Keywords:Homogeneous control systems; Motion planning; Sub-Riemannian metric; Homotopy method × Cite Format Result Cite Review PDF Full Text: DOI References: [1] E.L. Allgower, K. Georg, Continuation and path following, Acta Numer. (1992) 1-64.; E.L. Allgower, K. Georg, Continuation and path following, Acta Numer. (1992) 1-64. · Zbl 0792.65034 [2] Y. Chitour, Applied and theoretical aspects of the controllability of nonholonomic systems, Ph.D. Thesis, Rutgers University, 1996.; Y. Chitour, Applied and theoretical aspects of the controllability of nonholonomic systems, Ph.D. Thesis, Rutgers University, 1996. [3] Chitour, Y.; Sussmann, H. J., Line-integral estimates and motion planning using the continuation method, (Bailleul, J.; Sastry, S. S.; Sussmann, H. J., Essays on Mathematical Robotics. Essays on Mathematical Robotics, IMA, Vol. 104 (1998), Springer: Springer Berlin) · Zbl 0946.70003 [4] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, GTM 9, Springer, Berlin, 1987.; J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, GTM 9, Springer, Berlin, 1987. · Zbl 0254.17004 [5] Jurdjevic, V., Geometric Control Theory, Cambridge Studies in Advanced Mathematics (1997), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0940.93005 [6] Lerman, E., How fat is a fat bundle, Lett. Math. Phys., 15, 335-339 (1988) · Zbl 0646.53027 [7] Liu, W.; Sussmann, H. J., Shortest Paths for Sub-Riemannian Metrics on Rank-Two Distributions, Memoirs of the AMS, Vol. 118 (1995), AMS: AMS Providence, RI · Zbl 0843.53038 [8] Montgomery, R., A survey of singular curves in sub-Riemannian geometry, J. Dyn. Control Systems, 1, 49-90 (1995) · Zbl 0941.53021 [9] R. Montgomery, Singular extremals in Lie groups, Math. Control Systems Signals (1995) 217-234.; R. Montgomery, Singular extremals in Lie groups, Math. Control Systems Signals (1995) 217-234. · Zbl 0925.93132 [10] Pontryagin, L. S.; Boltyanski, V. G.; Gamkrelidze, R. V.; Mischenko, E. F., The Mathematical Theory of Optimal Processes (1962), Wiley: Wiley New York · Zbl 0102.32001 [11] Strichartz, R., Sub-Riemannian geometry, J. Differential Geom., 24, 221-263 (1983) · Zbl 0609.53021 [12] Sussmann, H. J., (Isidori, A.; Tarn, T. J., New Differential Geometric Methods in Nonholonomic Path Finding, Systems, Models, and Feedback (1992), Birkhäuser: Birkhäuser Boston) [13] H.J. Sussmann, A continuation method for nonholonomic path-finding problems, Proceedings of the 32nd IEEE CDC, San Antonio, TX, December 1993.; H.J. Sussmann, A continuation method for nonholonomic path-finding problems, Proceedings of the 32nd IEEE CDC, San Antonio, TX, December 1993. [14] V.S. Varadarajan, Lie Groups, Lie Algebras, and their Representations, GTM 102, Springer, Berlin, 1984.; V.S. Varadarajan, Lie Groups, Lie Algebras, and their Representations, GTM 102, Springer, Berlin, 1984. · Zbl 0955.22500 [15] Wazewski, T., Sur l’évaluation du domaine d’existence des fonctions implicites réelles ou complexes, Ann. Soc. Polon. Math., 20 (1947) · Zbl 0032.05601 [16] Wei, J.; Norman, E., Lie algebraic solution of linear differential equations, J. Math. Phys., 4, 575-581 (1963) · Zbl 0133.34202 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.