×

Serre-Tate theory for moduli spaces of PEL type. (English) Zbl 1107.11028

In this profound paper the author generalizes the Serre-Tate theory to the ordinary locus of good reduction of Shimura varieties of PEL-type. Let \(\mathcal D\) be a usual PEL datum and let \(\mathcal A_{\mathcal D}\) be the moduli space of abelian varieties with the prescribed additional structures. Assume that \(p>2\) and the moduli space \(\mathcal A_{\mathcal D}\) has good reduction at \(p\). On the reduction \(\mathcal A_{\mathcal D}\otimes \overline {\mathbb F}_p\), there are the Newton polygon stratification and the Ekedahl-Oort stratification. The first one comes from the classification of the associated \(p\)-divisible groups with additional structures up to isogeny, which is intensively studied by F. Oort [Faber, Carel (ed.) et al., Moduli of abelian varieties. Proceedings of the 3rd Texel conference, Texel Island, Netherlands, April 1999. Basel: Birkhäuser. Prog. Math. 195, 417–440 (2001; Zbl 1086.14037)], R. E. Kottwitz [Compos. Math. 56, 201–220 (1985; Zbl 0597.20038)], M. Rapoport and M. Richartz [Compos. Math. 103, 153–181 (1996; Zbl 0874.14008)], C.-L. Chai [Am. J. Math. 122, 967–990 (2000; Zbl 1057.11506)], and many others. The latter stratification comes from the classification of the associated \(\text{ BT}_1\)’s with additional structures up to isomorphism. This is studied by F. Oort [Faber, Carel (ed.) et al., Moduli of abelian varieties. Proceedings of the 3rd Texel conference, Texel Island, Netherlands, April 1999. Basel: Birkhäuser. Prog. Math. 195, 345–416 (2001; Zbl 1052.14047)], E. Z. Goren and F. Oort [J. Algebr. Geom. 9, 111–154 (2000; Zbl 0973.14010)], T. Wedhorn [Faber, Carel (ed.) et al., Moduli of abelian varieties. Proceedings of the 3rd Texel conference, Texel Island, Netherlands, April 1999. Basel: Birkhäuser. Prog. Math. 195, 441–471 (2001; Zbl 1052.14026)], and the author [Faber, Carel (ed.) et al., Moduli of abelian varieties. Proceedings of the 3rd Texel conference, Texel Island, Netherlands, April 1999. Basel: Birkhäuser. Prog. Math. 195, 255–298 (2001; Zbl 1084.14523)].
A point in \(\mathcal A_{\mathcal D}\otimes \overline {\mathbb F}_p\) is said to be \(\mu\)-ordinary if it lies in an open NP stratum. A point in \(\mathcal A_{\mathcal D}\otimes \overline {\mathbb F}_p\) is said to be \([p]\)-ordinary if it lies an open EO stratum. The first main result the author proves is that these two notions of ordinary agree. Using another result of the author and T. Wedhorn on the dimensions of the EO strata [math.Ag/0208161, to appear in Ann. Inst. Fourier(Grenoble)], [loc. cit. Zbl 1052.14026)], the author gives another proof of the density of the \(\mu\)-ordinary locus, which is proved by T. Wedhorn [Ann. Sci. École Norm. Sp. (4) 32, No. 5, 575–618 (1999; Zbl 0983.14024)].
The Serre-Tate theory says that the formal deformation space of an ordinary abelian variety has a natural structure of formal torus. The main result of this paper under review is to generalize the Serre-Tate theory to the ordinary locus of the considered moduli space. The author proves that the formal deformation of an ordinary object has a “group-like” structure called cascade, which is a generalization of the notion of a biextension. Roughly speaking, it is a sequence of tree-like fibration, which is the extension part of graded pieces of the slope filtration under forgetful maps, with fibers close to a B.-T. group. Recently, instead of looking at the whole formal deformation, Chai considered subvarieties with a fixed isomorphism type of the associated \(p\)-divisible groups, called leaves. This fine geometric structure as introduced by Oort. Chai proved that any formal completion of a leaf in the Siegel moduli space has similar group-like fibration structure. This further investigation provides the satisfactory generalized Serre-Tate theory.
In the last section the author gives a very interesting application on congruence relations of the Frobenius correspondences on the ordinary locus.

MSC:

11G18 Arithmetic aspects of modular and Shimura varieties
14K05 Algebraic theory of abelian varieties
PDF BibTeX XML Cite
Full Text: DOI arXiv Numdam EuDML

References:

[1] Blasius D. , Rogawski J.D. , Zeta functions of Shimura varieties , in: Jannsen U. , Kleiman S. , Serre J.-P. (Eds.), Motives , Proc. Symp. Pure Math. , vol. 55 , Amer. Math. Society , Providence, RI , 1994 , pp. 525 - 571 . MR 1265563 | Zbl 0827.11033 · Zbl 0827.11033
[2] Colmez P. , Fontaine J.-M. , Construction des représentations p -adiques semi-stables , Invent. Math. 140 ( 2000 ) 1 - 43 . MR 1779803 | Zbl 1010.14004 · Zbl 1010.14004
[3] Conrad B. , Background notes on p -divisible groups over local fields , unpublished manuscript, available at , http://www-math.mit.edu/ dejong .
[4] Deligne P. , Cristaux ordinaires et coordonnées canoniques , with the collaboration of L. Illusie; with an appendix by N.M. Katz , in: Giraud J. , Illusie L. , Raynaud M. (Eds.), Surfaces algébriques , Lect. Notes in Math. , vol. 868 , Springer-Verlag , Berlin , 1981 , pp. 80 - 137 . MR 638599 | Zbl 0537.14012 · Zbl 0537.14012
[5] Demazure M. et al. , Schémas en groupes, I, II, III , Lect. Notes in Math. , vol. 151, 152, 153 , Springer-Verlag , Berlin , 1970 . MR 274458 · Zbl 0223.14009
[6] Faltings G. , Integral crystalline cohomology over very ramified valuation rings , J. AMS 12 ( 1999 ) 117 - 144 . MR 1618483 | Zbl 0914.14009 · Zbl 0914.14009
[7] Faltings G. , Chai C.-L. , Degeneration of Abelian Varieties , Ergebnisse der Math., 3 Folge , vol. 22 , Springer-Verlag , Berlin , 1990 . MR 1083353 | Zbl 0744.14031 · Zbl 0744.14031
[8] Fontaine J.-M. , Groupes p -divisibles sur les corps locaux , Astérisque 47-48 ( 1977 ). MR 498610 | Zbl 0377.14009 · Zbl 0377.14009
[9] Goren E.Z. , Oort F. , Stratifications of Hilbert modular varieties , J. Algebraic Geom. 9 ( 2000 ) 111 - 154 . MR 1713522 | Zbl 0973.14010 · Zbl 0973.14010
[10] Grothendieck A. et al. , Groupes de monodromie en géométrie algébrique , Lect. Notes in Math. , vol. 288, 340 , Springer-Verlag , Berlin , 1972 . MR 354656
[11] Illusie L. , Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck) , Astérisque 127 ( 1985 ) 151 - 198 . MR 801922 · Zbl 1182.14050
[12] Katz N.M. , Slope filtration of F -crystals , Astérisque 63 ( 1979 ) 113 - 163 . MR 563463 | Zbl 0426.14007 · Zbl 0426.14007
[13] Katz N.M. , Serre-Tate local moduli , in: Giraud J. , Illusie L. , Raynaud M. (Eds.), Surfaces algébriques , Lect. Notes in Math. , vol. 868 , Springer-Verlag , Berlin , 1981 , pp. 138 - 202 . MR 638600 | Zbl 0477.14007 · Zbl 0477.14007
[14] Knus M.-A. , Quadratic and Hermitian Forms Over Rings , Grundlehren der Math. Wiss. , vol. 294 , Springer-Verlag , Berlin , 1991 . MR 1096299 | Zbl 0756.11008 · Zbl 0756.11008
[15] Kottwitz R.E. , Shimura varieties and twisted orbital integrals , Math. Ann. 269 ( 1984 ) 287 - 300 . MR 761308 | Zbl 0533.14009 · Zbl 0533.14009
[16] Kottwitz R.E. , Isocrystals with additional structure , Compos. Math. 56 ( 1985 ) 201 - 220 , Compos. Math. 109 ( 1997 ) 255 - 339 . Numdam | MR 809866 | Zbl 0597.20038 · Zbl 0597.20038
[17] Kottwitz R.E. , Points on some Shimura varieties over finite fields , J. AMS 5 ( 1992 ) 373 - 444 . MR 1124982 | Zbl 0796.14014 · Zbl 0796.14014
[18] Kraft H., Kommutative algebraische p -Gruppen (mit Anwendungen auf p -divisible Gruppen und abelsche Varietäten), manuscript, Univ. Bonn, Sept. 1975, 86 pp. (unpublished).
[19] Lubin J. , Serre J.-P. , Tate J. , Elliptic curves and formal groups, Woods Hole Summer Institute, 1964, Mimeographed notes , Available at , http://www.ma.utexas.edu/users/voloch/lst.html .
[20] Manin Yu.I. , The theory of commutative formal groups over fields of finite characteristic , Uspehi Mat. Nauk 18 ( 1963 ) 3 - 90 , English translation: Russian Math. Surv. 18 (1963) 1-83. MR 157972 | Zbl 0128.15603 · Zbl 0128.15603
[21] Messing W. , The Crystals Associated to Barsotti-Tate Groups: with Applications to Abelian Schemes , Lect. Notes in Math. , vol. 264 , Springer-Verlag , Berlin , 1972 . MR 347836 | Zbl 0243.14013 · Zbl 0243.14013
[22] Milne J.S. , Shimura varieties and motives , in: Jannsen U. , Kleiman S. , Serre J.-P. (Eds.), Motives , Proc. Symp. Pure Math. , vol. 55 , Amer. Math. Society , Providence, RI , 1994 , pp. 447 - 523 . MR 1265562 | Zbl 0816.14022 · Zbl 0816.14022
[23] Moonen B.J.J. , Models of Shimura varieties in mixed characteristics , in: Scholl A.J. , Taylor R. (Eds.), Galois Representations in Arithmetic Algebraic Geometry , London Math. Soc., Lecture Notes Series , vol. 254 , Cambridge Univ. Press , Cambridge , 1998 , pp. 271 - 354 . MR 1696489 · Zbl 0962.14017
[24] Moonen B.J.J. , Group schemes with additional structures and Weyl group cosets , in: Faber C. , van der Geer G. , Oort F. (Eds.), Moduli of Abelian Varieties , Progr. Math. , vol. 195 , Birkhäuser , Basel , 2001 , pp. 255 - 298 . MR 1827024 | Zbl 1084.14523 · Zbl 1084.14523
[25] Moonen B.J.J. , A dimension formula for Ekedahl-Oort strata , math.AG/0208161 , (To appear in Ann. Inst. Fourier Grenoble). Numdam | MR 2097418 | Zbl 1062.14033 · Zbl 1062.14033
[26] Mumford D. , Abelian Varieties , Oxford Univ. Press , Oxford , 1970 . MR 282985 | Zbl 0223.14022 · Zbl 0223.14022
[27] Noot R. , Models of Shimura varieties in mixed characteristic , J. Algebraic Geom. 5 ( 1996 ) 187 - 207 . MR 1358041 | Zbl 0864.14015 · Zbl 0864.14015
[28] Oort F. , A stratificiation of a moduli space of abelian varieties , in: Faber C. , van der Geer G. , Oort F. (Eds.), Moduli of Abelian Varieties , Progr. Math. , vol. 195 , Birkhäuser , Basel , 2001 , pp. 345 - 416 . MR 1827027 | Zbl 1052.14047 · Zbl 1052.14047
[29] Oort F. , Newton polygon strata in the moduli space of abelian varieties , in: Faber C. , van der Geer G. , Oort F. (Eds.), Moduli of Abelian Varieties , Progr. Math. , vol. 195 , Birkhäuser , Basel , 2001 , pp. 417 - 440 . MR 1827028 | Zbl 1086.14037 · Zbl 1086.14037
[30] Rapoport M. , On the Newton stratification , in: Sém. Bourbaki , 2002 . Numdam | MR 2074057 | Zbl 02134857 · Zbl 1159.14304
[31] Rapoport M. , Richartz M. , On the classification and specialization of F -isocrystals with additional structure , Compos. Math. 103 ( 1996 ) 153 - 181 . Numdam | MR 1411570 | Zbl 0874.14008 · Zbl 0874.14008
[32] Raynaud M. , Schémas en groupes de type ( p ,\cdots , p ) , Bull. Soc. math. France 102 ( 1974 ) 241 - 280 . Numdam | MR 419467 | Zbl 0325.14020 · Zbl 0325.14020
[33] Reimann H. , Zink Th. , Der Dieudonnémodul einer polarisierten abelschen Mannigfaltigkeit vom CM-Typ , Ann. Math. 128 ( 1988 ) 461 - 482 . MR 970608 | Zbl 0674.14030 · Zbl 0674.14030
[34] Saavedra Rivano N. , Catégories tannakiennes , Lect. Notes in Math. , vol. 265 , Springer-Verlag , Berlin , 1972 . MR 338002 | Zbl 0241.14008 · Zbl 0241.14008
[35] Stamm H. , On the reduction of the Hilbert-Blumenthal-moduli scheme with \Gamma 0 ( p )-level structure , Forum Math. 9 ( 1997 ) 405 - 455 . Article | Zbl 0916.14022 · Zbl 0916.14022
[36] Wedhorn T. , Ordinariness in good reductions of Shimura varieties of PEL-type , Ann. Scient. Éc. Norm. Sup. (4) 32 ( 1999 ) 575 - 618 . Numdam | MR 1710754 | Zbl 0983.14024 · Zbl 0983.14024
[37] Wedhorn T. , Congruence relations on some Shimura varieties , J. Reine Angew. Math. 524 ( 2000 ) 43 - 71 . MR 1770603 | Zbl 1101.14033 · Zbl 1101.14033
[38] Wedhorn T. , The dimension of Oort strata of Shimura varieties of PEL-type , in: Faber C. , van der Geer G. , Oort F. (Eds.), Moduli of Abelian Varieties , Progr. Math. , vol. 195 , Birkhäuser , Basel , 2001 , pp. 441 - 471 . MR 1827029 | Zbl 1052.14026 · Zbl 1052.14026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.