Anastassiou, George A.; Gal, Sorin G. Geometric and approximation properties of generalized singular integrals in the unit disk. (English) Zbl 1107.30029 J. Korean Math. Soc. 43, No. 2, 425-443 (2006). Consider \(f\) to be a (normalized) function in the disk algebra. The auhors prove estimates for the error of approximation of \(f\) by certain generalized complex singular integrals of Picard-, Poisson-Cauchy- and Gauss-Weierstrass-type. The results are in terms of the \((n+1)\)-st modulus of smoothness of \(f\). Also, approximation results for vector-valued functions on the unit disk are presented. Reviewer: Jürgen Müller (Trier) Cited in 16 Documents MSC: 30E10 Approximation in the complex plane 41A25 Rate of convergence, degree of approximation Keywords:Jackson-type estimates; complex singular integrals PDF BibTeX XML Cite \textit{G. A. Anastassiou} and \textit{S. G. Gal}, J. Korean Math. Soc. 43, No. 2, 425--443 (2006; Zbl 1107.30029) Full Text: DOI