zbMATH — the first resource for mathematics

Estimates of the derivatives for a class of parabolic degenerate operators with unbounded coefficients in \(\mathbb R^N\). (English) Zbl 1107.35071
The paper deals with a class of perturbations of the degenerate Ornstein-Uhlenbeck operator in \(\mathbb R^N.\) By virtue of a revised version of the Bernstein method, the author obtains various uniform estimates for the semigroup \(\{T(t)\}_{t\geq0}\) associated with the realization of a degenerate elliptic operator in the space of the bounded and continuous functions in \(\mathbb R^N.\)

35K65 Degenerate parabolic equations
35B65 Smoothness and regularity of solutions to PDEs
47D06 One-parameter semigroups and linear evolution equations
35B45 A priori estimates in context of PDEs
Full Text: EuDML
[1] S. Bernstein, Sur la généralisation du probléme de Dirichlet, I, Math. Ann. 62 (1906), 253-271. MR1511375 JFM37.0383.01 · JFM 37.0383.01
[2] M. Bertoldi and L. Lorenzi, Analytic methods for Markov semigroups, Preprint 401, Dipartimento di Matematica, Università di Parma, 2005. MR2313847 · Zbl 1065.35077
[3] M. Bertoldi and L. Lorenzi, Estimates of the derivatives for parabolic operators with unbounded coefficients, Trans. Amer. Math. Soc. (to appear). Zbl1065.35077 MR2139521 · Zbl 1065.35077
[4] S. Cerrai, Some results for second order elliptic operators having unbounded coefficients, Differential Integral Equations 11 (1998), 561-588. Zbl1131.35393 MR1666273 · Zbl 1131.35393
[5] G. Da Prato, Regularity results for some degenerate parabolic equations, Riv. Mat. Univ. Parma (6) 2* (1999), 245-257. Zbl0962.35110 MR1752802 · Zbl 0962.35110
[6] S. Fornaro, G. Metafune and E. Priola, Gradient estimates for Dirichlet parabolic problems in unbounded domains, J. Differential Equations 205 (2004), 329-353. Zbl1061.35022 MR2092861 · Zbl 1061.35022
[7] A. Friedman, “Partial Differential Equations of Parabolic Type”, Prentice Hall, Englewood Cliffs, N.J., 1964. Zbl0144.34903 MR181836 · Zbl 0144.34903
[8] R.Z. Has’minskii, “Stochastic Stability of Differential Equations”, Nauka 1969 (in Russian), English translation: Sijthoff and Noordhoff 1980. MR600653
[9] N.V. Krylov, “Introduction to the Theory of Diffusion Processes”, American Mathematical Society 142, (1992). Zbl0844.60050 MR1311478 · Zbl 0844.60050
[10] O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural’ceva, “Linear and Quasilinear Equations of Parabolic Type”, Nauka, English transl.: American Mathematical Society, Providence, 1968. Zbl0174.15403 · Zbl 0174.15403
[11] G. Lieberman, “Second Order Parabolic Differential Equations”, World Scientific Publishing Co. Pte. Ltd, Singapore, New Jersey, London Hong Kong, 1996. Zbl0884.35001 MR1465184 · Zbl 0884.35001
[12] L. Lorenzi, Schauder estimates for a class of degenerate elliptic and parabolic problems with unbounded coefficients, Differential Integral Equations 18 (2005), 531-566. Zblpre05720819 MR2136978 · Zbl 1212.35255
[13] A. Lunardi, “Analytic Semigroups and Optimal Regularity in Parabolic Problems”, Birkhäuser, Basel, 1995. Zbl0816.35001 MR1329547 · Zbl 0816.35001
[14] A. Lunardi, Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in \(\mathbb{R}^N\), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), 133-164. Zbl0887.35062 MR1475774 · Zbl 0887.35062
[15] A. Lunardi, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in \(\mathbb{R}^N\), Studia Math. 128 (1998), 171-198. Zbl0899.35014 MR1490820 · Zbl 0899.35014
[16] M. Manfredini, The Dirichlet problem for a class of ultraparabolic equations, Adv. Differential Equations 2 (1997), 831-866. Zbl1023.35518 MR1751429 · Zbl 1023.35518
[17] M. Manfredini and A. Pascucci, A priori estimates for quasilinear degenerate parabolic equations, Proc. Amer. Math. Soc. 131 (2002), 1115-1120. Zbl1195.35173 MR1948102 · Zbl 1195.35173
[18] G. Metafune, D. Pallara and M. Wacker, Feller semigroups on \(\mathbb{R}^N\), Semigroup Forum 65 (2002), 159-205. Zbl1014.35050 MR1911723 · Zbl 1014.35050
[19] A. Pascucci, Hölder regularity for a Kolmogorov equation, Trans. Amer. Math. Soc. 355 (2002), 901-924. Zbl1116.35330 MR1938738 · Zbl 1116.35330
[20] S. Polidoro, On a class of ultraparabolic operators of Kolmogorov-Fokker-Plank type, Matematiche (Catania) 49 (1994), 53-105 (1995). Zbl0845.35059 MR1386366 · Zbl 0845.35059
[21] E. Priola, The Cauchy problem for a class of Markov-type semigroups, Comm. Appl. Anal. 5 (2001), 49-75. Zbl1084.47517 MR1844671 · Zbl 1084.47517
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.