Anza Hafsa, Omar; Mandallena, Jean-Philippe; Michaille, Gérard Homogenization of periodic nonconvex integral functionals in terms of Young measures. (English) Zbl 1107.49013 ESAIM, Control Optim. Calc. Var. 12, 35-51 (2006). Summary: Homogenization of periodic functionals, whose integrands possess possibly multi-well structure, is treated in terms of Young measures. More precisely, we characterize the \(\Gamma\)-limit of sequences of such functionals in the set of Young measures, extending the relaxation theorem of Kinderlehrer and Pedregal. We also make precise the relationship between our homogenized density and the classical one. Cited in 3 Documents MSC: 49J45 Methods involving semicontinuity and convergence; relaxation 35B27 Homogenization in context of PDEs; PDEs in media with periodic structure 49Q20 Variational problems in a geometric measure-theoretic setting 74G65 Energy minimization in equilibrium problems in solid mechanics 74Q05 Homogenization in equilibrium problems of solid mechanics 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems Keywords:Young measures; homogenization × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] M.A. Akcoglu and U. Krengel , Ergodic theorems for superadditive processes . J. Reine Angew. Math. 323 ( 1981 ) 53 - 67 . Article | Zbl 0453.60039 · Zbl 0453.60039 · doi:10.1515/crll.1981.323.53 [2] F. Alvarez and J.-P. Mandallena , Homogenization of multiparameter integrals . Nonlinear Anal. 50 ( 2002 ) 839 - 870 . Zbl 1005.49008 · Zbl 1005.49008 · doi:10.1016/S0362-546X(01)00788-X [3] H. Attouch , Variational convergence for functions and operators . Pitman ( 1984 ). MR 773850 | Zbl 0561.49012 · Zbl 0561.49012 [4] J.M. Ball and R.D. James , Fine phase mixtures as minimizers of energy . Arch. Rat. Mech. Anal. 100 ( 1987 ) 13 - 52 . Zbl 0629.49020 · Zbl 0629.49020 · doi:10.1007/BF00281246 [5] K. Bhattacharya and R. Kohn , Elastic energy minimization and the recoverable strains of polycristalline shape-memory materials . Arch. Rat. Mech. Anal. 139 ( 1997 ) 99 - 180 . Zbl 0894.73225 · Zbl 0894.73225 · doi:10.1007/s002050050049 [6] A. Braides , Homogenization of some almost periodic coercive functional . Rend. Accad. Naz. Sci. 103 ( 1985 ) 313 - 322 . Zbl 0582.49014 · Zbl 0582.49014 [7] A. Braides and A. Defranceschi , Homogenization of multiple integrals . Oxford University Press ( 1998 ). MR 1684713 | Zbl 0911.49010 · Zbl 0911.49010 [8] C. Castaing , P. Raynaud de Fitte and M. Valadier , Young measures on topological spaces with applications in control theory and probability theory . Mathematics and Its Applications, Kluwer, The Netherlands ( 2004 ). MR 2102261 | Zbl 1067.28001 · Zbl 1067.28001 [9] C. Castaing and M. Valadier , Convex analysis and measurable multifunctions . Lect. Notes Math. 580 ( 1977 ). MR 467310 | Zbl 0346.46038 · Zbl 0346.46038 [10] B. Dacorogna , Quasiconvexity and relaxation of nonconvex variational problems . J. Funct. Anal. 46 ( 1982 ) 102 - 118 . Zbl 0547.49003 · Zbl 0547.49003 · doi:10.1016/0022-1236(82)90046-5 [11] G. Dal maso, An introduction to \(\Gamma \)-convergence. Birkhäuser (1993). MR 1201152 | Zbl 0816.49001 · Zbl 0816.49001 [12] G. Dal maso and L. Modica, Nonlinear stochastic homogenization. J. Reine Angew. Math. 363 (1986) 27-43. · Zbl 0607.49010 [13] L.C. Evans , Weak convergence methods for nonlinear partial differential equations . CBMS Amer. Math. Soc. 74 ( 1990 ). MR 1034481 | Zbl 0698.35004 · Zbl 0698.35004 [14] I. Fonseca , S. Müller and P. Pedregal , Analysis of concentration and oscillation effects generated by gradients . SIAM J. Math. Anal. 29 ( 1998 ) 736 - 756 . Zbl 0920.49009 · Zbl 0920.49009 · doi:10.1137/S0036141096306534 [15] D. Kinderlherer and P. Pedregal , Characterization of Young measure generated by gradients . Arch. Rat. Mech. Anal. 115 ( 1991 ) 329 - 365 . Zbl 0754.49020 · Zbl 0754.49020 · doi:10.1007/BF00375279 [16] D. Kinderlherer and P. Pedregal , Gradient Young measures generated by sequences in Sobolev spaces . J. Geom. Anal. 4 ( 1994 ) 59 - 89 . Zbl 0808.46046 · Zbl 0808.46046 · doi:10.1007/BF02921593 [17] C. Licht and G. Michaille , Global-local subadditive ergodic theorems and application to homogenization in elasticity . Ann. Math. Blaise Pascal 9 ( 2002 ) 21 - 62 . Numdam | Zbl 1070.28006 · Zbl 1070.28006 · doi:10.5802/ambp.149 [18] P. Marcellini , Periodic solutions and homogenization of nonlinear variational problems . Annali Mat. Pura Appl. 117 ( 1978 ) 139 - 152 . Zbl 0395.49007 · Zbl 0395.49007 · doi:10.1007/BF02417888 [19] S. Müller , Homogenization of nonconvex integral functionals and cellular elastic materials . Arch. Rat. Mech. Anal. 100 ( 1987 ) 189 - 212 . Zbl 0629.73009 · Zbl 0629.73009 · doi:10.1007/BF00284506 [20] P. Pedregal , Parametrized measures and variational principles . Birkhäuser ( 1997 ). MR 1452107 | Zbl 0879.49017 · Zbl 0879.49017 [21] P. Pedregal , \(\Gamma \)-convergence through Young meaasures . SIAM J. Math. Anal. 36 ( 2004 ) 423 - 440 . Zbl 1077.49012 · Zbl 1077.49012 · doi:10.1137/S0036141003425696 [22] M. Valadier , Young measures . Lect. Notes Math. 1446 ( 1990 ) 152 - 188 . Zbl 0738.28004 · Zbl 0738.28004 [23] M. Valadier , A course on Young measures . Rend. Istit. Mat. Univ. Trieste 26 ( 1994 ) Suppl. 349 - 394 . Zbl 0880.49013 · Zbl 0880.49013 [24] W.P. Ziemer , Weakly differentiable functions . Springer ( 1989 ). MR 1014685 | Zbl 0692.46022 · Zbl 0692.46022 · doi:10.1007/978-1-4612-1015-3 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.