zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Padé approximants and Adomian decomposition method for solving the Flierl-Petviashivili equation and its variants. (English) Zbl 1107.65061
Summary: We present a reliable combination of Adomian decomposition algorithm and Padé approximants to investigate the Flierl-Petviashivili (FP) equation and its variants. The approach introduces an alternative framework designed to overcome the difficulty of the singular point at $x = 0$. We also investigate two generalized variants of the FP equation. The proposed framework reveals quite a number of remarkable features of the combination of the two algorithms.

MSC:
65L05Initial value problems for ODE (numerical methods)
34A34Nonlinear ODE and systems, general
WorldCat.org
Full Text: DOI
References:
[1] Davis, H. T.: Introduction to nonlinear differential and integral equations. (1962) · Zbl 0106.28904
[2] Chandrasekhar, S.: Introduction to the study of stellar structure. (1967) · Zbl 0149.24301
[3] Shawagfeh, N. T.: Nonperturbative approximate solution for Lane -- Emden equation. J. math. Phys. 34, No. 9, 4364-4369 (1993) · Zbl 0780.34007
[4] Wazwaz, A. M.: A new method for solving differential equations of the Lane -- Emden type. Appl. math. Comput. 118, No. 2/3, 287-310 (2001) · Zbl 1023.65067
[5] Wazwaz, A. M.: Analytical solution for the time-dependent Emden -- Fowler type of equations by Adomian decomposition method. Appl. math. Comput. 166, 638-651 (2005) · Zbl 1073.65105
[6] Boyd, J. P.: Padé approximant algorithm for solving nonlinear ordianry differential equation boundary value problems on an unbounded domain. Comput. phys. 2, No. 3, 299-303 (1997)
[7] Boyd, J. P.: Monopolar and dipolar vortex solitons in two space dimensions. Wave motion 13, 223-241 (1991) · Zbl 0749.76016
[8] Flierl, G. R.: Isolated eddy models in geophysics. Ann. revs. Fluid mechan. 19, 493-530 (1987)
[9] Flierl, G. R.: Baroclinic solitary waves with radial symmetry. Dyn. atmos. Oceans 3, 15-38 (1979)
[10] Petviashvili, V. I.: Red spot of Jupiter and the drift soliton in a plasma. JETP lett. 32, 619-622 (1981)
[11] Baker, George A.; Graves-Morris, Peter: Padé approximants. (1996)
[12] Adomian, G.: Solving frontier problems of physics: the decomposition method. (1994) · Zbl 0802.65122
[13] Wazwaz, A. M.: A new method for solving singular initial value problems in the second order ordinary differential equations. Appl. math. Comput. 128, 47-57 (2002) · Zbl 1030.34004
[14] Wazwaz, A. M.: Partial differential equations: methods and applications. (2002) · Zbl 1079.35001
[15] Wazwaz, A. M.: A first course in integral equations. (1997) · Zbl 0924.45001
[16] Wazwaz, A. M.: A reliable modification of Adomian’s decomposition method. Appl. math. Comput. 102, 77-86 (1999) · Zbl 0928.65083
[17] Wazwaz, A. M.: The modified decomposition method and the Padé approximants for solving Thomas -- Fermi equation. Appl. math. Comput. 105, 11-19 (1999) · Zbl 0956.65064
[18] Wazwaz, A. M.: Analytical approximations and Padé approximants for Volterra’s population model. Appl. math. Comput. 100, 13-25 (1999) · Zbl 0953.92026
[19] Wazwaz, A. M.: A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl. math. Comput. 111, No. 1, 33-51 (2000) · Zbl 1023.65108