×

Abundant solitons solutions for several forms of the fifth-order KdV equation by using the tanh method. (English) Zbl 1107.65092

Summary: We use the tanh method for solving several forms of the fifth-order nonlinear Korteweg-de Vries (KdV) equation. The forms include those of P. D. Lax [Commun. Pure Appl. Math. 21, 467–490 (1968; Zbl 0162.41103)], K. Sawada and T. Kotera [Prog. Theor. Phys. 51, 1355–1367 (1974; Zbl 1125.35400)], D. Kaup [Stud. Appl. Math. 62, 189–216 (1980; Zbl 0431.35073)], B. A. Kupershmidt [A super KdV equation: an integrable system, Phys. Lett. 102A, 213–215 (1984)], M. Ito [J. Phys. Soc. Jpn. 49, 771–778 (1980)], and other related special cases. Abundant solitons solutions are derived. Two necessary criteria are established to build up reliable strategies that govern the relation between the parameters of the equation. Previously known solutions are recovered and entirely new bell shaped solitons are determined.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
35Q51 Soliton equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Goktas, U.; Hereman, W., Symbolic computation of conserved densities for systems of nonlinear evolution equations, J. Symb. Comput., 24, 591-621 (1997) · Zbl 0891.65129
[2] Baldwin, D.; Goktas, U.; Hereman, W.; Hong, L.; Martino, R. S.; Miller, J. C., Symbolic computation of exact solutions in hyperbolic and elliptic functions for nonlinear PDEs, J. Symb. Comput., 37, 669-705 (2004) · Zbl 1137.35324
[3] Hereman, W.; Nuseir, A., Symbolic methods to construct exact solutions of nonlinear partial differential equations, Math. Comput. Simul., 43, 13-27 (1997) · Zbl 0866.65063
[4] Ito, M., An extension of nonlinear evolution equations of the KdV (mKdV) type to higher orders, J. Phys. Soc. Jpn., 49, 771-778 (1980) · Zbl 1334.35282
[5] Kaup, D., On the inverse scattering problem for the cubic eigenvalue problems of the class \(ψ_{3x}+6 Qψ_x +6 Rψ = λψ \), Stud. Appl. Math., 62, 189-216 (1980) · Zbl 0431.35073
[6] Kupershmidt, B. A., A super KdV equation: an integrable system, Phys. Lett., 102A, 213-215 (1984)
[7] Lax, P. D., Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math., 62, 467-490 (1968) · Zbl 0162.41103
[8] Sawada, K.; Kotera, T., A method for finding \(N\)-soliton solutions for the KdV equation and KdV-like equation, Prog. Theor. Phys., 51, 1355-1367 (1974) · Zbl 1125.35400
[9] Parker, A.; Dye, J. M., Boussinesq-type equations and switching solitons, Proc. Inst. NAS Ukraine, 43, 1, 344-351 (2002) · Zbl 1034.37040
[10] Hirota, R., Direct Methods in Soliton Theory (1980), Springer: Springer Berlin
[11] Ablowitz, M.; Segur, H., Solitons and the Inverse Scattering Transform (1981), SIAM: SIAM Philadelphia · Zbl 0472.35002
[12] Malfliet, W., Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60, 7, 650-654 (1992) · Zbl 1219.35246
[13] Malfliet, W., The tanh method: I. Exact solutions of nonlinear evolution and wave equations, Phys. Scripta, 54, 563-568 (1996) · Zbl 0942.35034
[14] Malfliet, W., The tanh method: II. Perturbation technique for conservative systems, Phys. Scripta, 54, 569-575 (1996) · Zbl 0942.35035
[15] Wazwaz, A. M., The tanh method for travelling wave solutions of nonlinear equations, Appl. Math. Comput., 154, 3, 713-723 (2004) · Zbl 1054.65106
[16] Wazwaz, A. M., Partial Differential Equations: Methods and Applications (2002), Balkema Publishers: Balkema Publishers The Netherlands · Zbl 0997.35083
[17] Wazwaz, A. M., The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations, Appl. Math. Comput., 49, 565-574 (2005) · Zbl 1070.35043
[18] Wazwaz, A. M., Variants of the two-dimensional Boussinesq equations with compactons, solitons and periodic solutions, Comput. Math. Appl., 49, 295-301 (2005) · Zbl 1070.35042
[19] Wazwaz, A. M., The tanh and the sine-cosine methods for a reliable treatment of the modified equal width equation and its variants, Commun. Nonlinear Sci. Numer. Simul., 112, 148-160 (2006) · Zbl 1078.35108
[20] Wazwaz, A. M., New compactons, solitons and periodic solutions for nonlinear variants of the KdV and the KP equations, Chaos, Solitons Compactons, 22, 1, 249-260 (2004) · Zbl 1062.35121
[21] Wazwaz, A. M., Special types of the nonlinear dispersive Zakharov-Kuznetsov equation with compactons, solitons and periodic solutions, Int. J. Comput. Math., 81, 9, 1107-1119 (2004) · Zbl 1059.35131
[22] Wazwaz, A. M., A class of nonlinear fourth order variant of a generalized Camassa-Holm equation with compact and noncompact solutions, Appl. Math. Comput., 165, 485-501 (2005) · Zbl 1070.35044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.