zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New solitary wave solutions to the Kuramoto-Sivashinsky and the Kawahara equations. (English) Zbl 1107.65094
Summary: The Kuramoto-Sivashinsky equation and the Kawahara equation are studied. The tanh method and the extended tanh method are used for analytic treatment for these two equations. By means of these methods, new solitary wave solutions are determined for each equation. The two approaches are reliable and manageable.

65M70Spectral, collocation and related methods (IVP of PDE)
35Q51Soliton-like equations
35Q53KdV-like (Korteweg-de Vries) equations
Full Text: DOI
[1] Conte, R.: Exact solutions of nonlinear partial differential equations by singularity analysis. Lecture notes in physics, 1-83 (2003) · Zbl 1060.35001
[2] J. Rademacher, R. Wattenberg, Viscous shocks in the destabilized Kuramoto-Sivashinsky, J. Comput. Nonlin. Dynam., in press.
[3] Wang, D.; Zhang, H. -Q.: Further improved F-expansion method and new exact solutions of Nizhnik -- Novikov -- Veselov equation. Chaos solitons fractals 25, 601-610 (2005) · Zbl 1083.35122
[4] Zhang, J-F.; Zheng, C-L: Abundant localized coherent structures of the (2+1)-dimensional generalized Nizhnik -- Novikov -- Veselov system. Chin. J. Phys. 41, No. 3, 242-254 (2003)
[5] Bridges, T.; Derks, G.: Linear instability of solitary wave solutions of the Kawahara equation and its generalizations. SIAM J. Math. anal. 33, No. 6, 1356-1378 (2002) · Zbl 1011.35117
[6] Berloff, N. G.; Howard, L. N.: Solitary and periodic solutions to nonlinear nonintegrable equations. Stud. appl. Math. 99, 1-24 (1997) · Zbl 0880.35105
[7] Rosenau, P.; Pikovsky, A.: Phase compactons in chains of dispersively coupled oscillations. Phys. rev. Lett. 94, No. 174102, 14 (2005)
[8] Baldwin, D.; Goktas, U.; Hereman, W.; Hong, L.; Martino, R. S.; Miller, J. C.: Symbolic computation of exact solutions in hyperbolic and elliptic functions for nonlinear pdes. J. symbolic comput. 37, 669705 (2004) · Zbl 1137.35324
[9] Goktas, U.; Hereman, W.: Symbolic computation of conserved densities for systems of nonlinear evolution equations. J. symbolic comput. 24, 591621 (1997)
[10] Wazwaz, A. M.: The tanh method for travelling wave solutions of nonlinear equations. Appl. math. Comput. 154, No. 3, 713723 (2004) · Zbl 1054.65106
[11] Wazwaz, A. M.: Partial differential equations: methods and applications. (2002) · Zbl 1079.35001
[12] Wazwaz, A. M.: Compactons in a class of nonlinear dispersive equations. Math. comput. Modell. 37, No. 3/4, 333341 (2003) · Zbl 1044.35078
[13] Wazwaz, A. M.: Distinct variants of the NNVV equation with compact and noncompact structures. Appl. math. Comput. 150, 365377 (2004) · Zbl 1039.35110
[14] Wazwaz, A. M.: Variants of the generalized NNVV equation with compact and noncompact structures. Comput. math. Appl. 47, 583591 (2004) · Zbl 1062.35120
[15] Malfliet, W.; Hereman, W.: The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Phys. scripta 54, 563568 (1996) · Zbl 0942.35034
[16] Malfliet, W.; Hereman, W.: The tanh method: II. Perturbation technique for conservative systems. Phys. scripta 54, 569575 (1996) · Zbl 0942.35035