[1] |
Kanwal, R. P.; Liu, K. C.: A Taylor expansion approach for solving integral equations. Int. J. Math. educ. Sci. technol. 20, No. 3, 411-414 (1989) · Zbl 0683.45001 |

[2] |
Nas, S.; Yalçinbaş, S.; Sezer, M.: A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations. Int. J. Math. educ. Sci. technol. 31, No. 2, 213-225 (2000) · Zbl 1018.65152 |

[3] |
Sezer, M.: A method for approximate solution of the second-order linear differential equations in terms of Taylor polynomials. Int. J. Math. educ. Sci. technol. 27, No. 6, 821-834 (1996) · Zbl 0887.65084 |

[4] |
Yalçinbaş, S.; Sezer, M.: The approximate solution of high-order linear Volterra -- Fredholm integro-differential equations in terms of Taylor polynomials. Appl. math. Comput. 112, 291-308 (2002) · Zbl 1023.65147 |

[5] |
Akyüz, A.; Sezer, M.: Chebyshev polynomial solutions of systems of high-order linear differential equations with variable coefficients. Appl. math. Comput. 144, 237-247 (2003) · Zbl 1024.65059 |

[6] |
Gulsu, M.; Sezer, M.: The approximate solution of high-order linear difference equation with variable coefficients in terms of Taylor polynomials. Appl. math. Comput. 168, No. 1, 76-88 (2005) · Zbl 1082.65592 |

[7] |
Sezer, M.; Gulsu, M.: A new polynomial approach for solving difference and Fredholm integro-difference equations with mixed argument. Appl. math. Comput. 171, No. 1, 332-344 (2005) · Zbl 1084.65133 |

[8] |
Spiegel, M. R.: Theory and problems of complex variables. (1972) · Zbl 0243.44005 |

[9] |
Chiang, Y. M.; Wang, S.: Oscillation results of certain higher-order linear differential equations with periodic coefficients in the complex plane. J. math. Anal. appl. 215, 560-576 (1997) · Zbl 0901.34042 |

[10] |
Heittokangas, J.; Korhonen, R.; Rattya, J.: Growth estimates for solutions of linear complex differential equations. Ann. acad. Sci. fenn. Math. 29, 233-246 (2004) · Zbl 1057.34111 |