×

Localization for one-dimensional, continuum, Bernoulli-Anderson models. (English) Zbl 1107.82025

Summary: We use scattering theoretic methods to prove strong dynamical and exponential localization for one-dimensional, continuum, Anderson-type models with singular distributions; in particular, the case of a Bernoulli distribution is covered. The operators we consider model alloys composed of at least two distinct types of randomly dispersed atoms. Our main tools are the reflection and transmission coefficients for compactly supported single-site perturbations of a periodic background which we use to verify the necessary hypotheses of multi-scale analysis. We show that nonreflectionless single sites lead to a discrete set of exceptional energies away from which localization occurs.

MSC:

82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
47B80 Random linear operators

References:

[1] M. Aizenman and S. Molchanov, Localization at large disorder and at extreme energies: An elementary derivation , Comm. Math. Phys. 157 (1993), 245–278. · Zbl 0782.60044 · doi:10.1007/BF02099760
[2] M. Aizenman, J. H. Schenker, R. M. Friedrich, and D. Hundertmark, Finite-volume criteria for Anderson localization , Comm. Math. Phys. 224 (2001), 219–253. \CMP1 868 998 · Zbl 1038.82038 · doi:10.1007/s002200100441
[3] J. Avron and B. Simon, Almost periodic Schrödinger operators, II: The integrated density of states , Duke Math. J. 50 (1983), 369–391. · Zbl 0544.35030 · doi:10.1215/S0012-7094-83-05016-0
[4] J. Barbaroux, W. Fischer, and P. Müller, Dynamical properties of random Schrödinger operators ,
[5] M. M Benderskiĭ and L. A. Pastur, On the asymptotics of the solutions of second-order equations with random coefficients (in Russian), Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 22 (1975), 3–14.
[6] G. Borg, “Uniqueness theorems in the spectral theory of \(y^\prime \prime + ( \lambda - q(x))y=0\)” in Proceedings of the 11th Scandinavian Congress of Mathematicians (Trondheim, Norway, 1949) , Grundt, Oslo, 1952, 276–287. · Zbl 0048.06802
[7] P. Bougerol and J. Lacroix, Products of Random Matrices with Applications to Schrödinger Operators , Progr. Probab. Statist. 8 , Birkhäuser, Boston, 1985. · Zbl 0572.60001
[8] M. Campanino and A. Klein, A supersymmetric transfer matrix and differentiability of the density of states in the one-dimensional Anderson model , Comm. Math. Phys. 104 (1986), 227–241. · Zbl 0603.60061 · doi:10.1007/BF01211591
[9] R. Carmona, One-dimensional Schrödinger operators with random potentials: A survey , Acta Appl. Math. 4 (1985), 65–91. · Zbl 0547.60069 · doi:10.1007/BF02293491
[10] –. –. –. –., “Random Schrödinger operators” in École d’été de probabilités de Saint-Flour (Saint-Flour, France, 1984), XIV, Lecture Notes in Math. 1180 , Springer, Berlin, 1986, 1–124. · doi:10.1007/BFb0074918
[11] R. Carmona, A. Klein, and F. Martinelli, Anderson localization for Bernoulli and other singular potentials , Comm. Math. Phys. 108 (1987), 41–66. · Zbl 0615.60098 · doi:10.1007/BF01210702
[12] R. Carmona and J. Lacroix, Spectral Theory of Random Schrödinger Operators , Probab. Appl., Birkhäuser, Boston, 1990. · Zbl 0717.60074
[13] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations , McGraw-Hill, New York, 1955. · Zbl 0064.33002
[14] J.-M. Combes and P. D. Hislop, Localization for some continuous, random Hamiltonians in \(d\)-dimensions , J. Funct. Anal. 124 (1994), 149–180. · Zbl 0801.60054 · doi:10.1006/jfan.1994.1103
[15] D. Damanik and P. Stollmann, Multi-scale analysis implies strong dynamical localization , Geom. Funct. Anal. 11 (2001), 11–29. · Zbl 0976.60064 · doi:10.1007/PL00001666
[16] P. K. Datta and K. Kundu, The absence of localization in one-dimensional disordered harmonic chains , J. Phys. Condens. Matter 6 (1994), 4465–4478.
[17] S. De Bièvre and F. Germinet, Dynamical localization for the random dimer Schrödinger operator , J. Stat. Phys. 98 (2000), 1135–1148. · Zbl 1005.82028 · doi:10.1023/A:1018615728507
[18] H. von Dreifus and A. Klein, A new proof of localization in the Anderson tight binding model , Comm. Math. Phys. 124 (1989), 285–299. · Zbl 0698.60051 · doi:10.1007/BF01219198
[19] M. S. P. Eastham, The Spectral Theory of Periodic Differential Equations , Texts in Math., Scottish Acad. Press, Edinburgh, 1973. · Zbl 0287.34016
[20] A. Figotin, Exponential growth of solutions of a second-order difference equation with random coefficients (in Russian), Dokl. Akad. Nauk UzSSR 1980 , 9–10.
[21] A. Figotin and A. Klein, Localization of classical waves, I: Acoustic waves , Comm. Math. Phys. 180 (1996), 439–482. · Zbl 0878.35109 · doi:10.1007/BF02099721
[22] J. Fröhlich, F. Martinelli, E. Scoppola, and T. Spencer, Constructive proof of localization in the Anderson tight binding model , Comm. Math. Phys. 101 (1985), 21–46. · Zbl 0573.60096 · doi:10.1007/BF01212355
[23] F. Germinet and S. De Bièvre, Dynamical localization for discrete and continuous random Schrödinger operators , Comm. Math. Phys. 194 (1998), 323–341. · Zbl 0911.60099 · doi:10.1007/s002200050360
[24] F. Germinet and A. Klein, Bootstrap multiscale analysis and localization in random media , Comm. Math. Phys. 222 (2001), 415–448. \CMP1 859 605 · Zbl 0982.82030 · doi:10.1007/s002200100518
[25] F. Gesztesy and B. Simon, On local Borg-Marchenko uniqueness results , Comm. Math. Phys. 211 (2000), 273–287. · Zbl 0985.34077 · doi:10.1007/s002200050812
[26] K. Ishii, Localization of eigenstates and transport phenomena in one-dimensional disordered systems , Progr. Theoret. Phys. 53 (1973), 77–118.
[27] K. Ishii and H. Matsuda, Localization of normal modes and energy transport in the disordered harmonic chain , Progr. Theoret. Phys. 45 (1970), 56–86.
[28] T. Kato, Perturbation Theory for Linear Operators , Grundlehren Math. Wiss. 132 , Springer, New York, 1966. · Zbl 0148.12601
[29] W. Kirsch, On a class of random Schrödinger operators , Adv. in Appl. Math. 6 (1985), 177–187. · Zbl 0578.60059 · doi:10.1016/0196-8858(85)90010-7
[30] W. Kirsch, S. Kotani, and B. Simon, Absence of absolutely continuous spectrum for some one-dimensional random but deterministic Schrödinger operators , Ann. Inst. H. Poincaré Phys. Théor. 42 (1985), 383–406. · Zbl 0581.60052
[31] W. Kirsch, P. Stollmann, and G. Stolz, Anderson localization for random Schrödinger operators with long range interactions , Comm. Math. Phys. 195 (1998), 495–507. · Zbl 0928.47049 · doi:10.1007/s002200050399
[32] A. Klein, J. Lacroix, and A. Speis, Localization for the Anderson model on a strip with singular potentials , J. Funct. Anal. 94 (1990), 135–155. · Zbl 0780.60063 · doi:10.1016/0022-1236(90)90031-F
[33] A. Klein, F. Martinelli, and J. F. Perez, A rigorous replica trick approach to Anderson localization in one dimension , Comm. Math. Phys. 106 (1986), 623–633. · Zbl 0614.60098 · doi:10.1007/BF01463399
[34] F. Klopp, Localization for some continuous random Schrödinger operators , Comm. Math. Phys. 167 (1995), 553–569. · Zbl 0820.60044 · doi:10.1007/BF02101535
[35] V. Kostrykin and R. Schrader, Scattering theory approach to random Schrödinger operators in one dimension , Rev. Math. Phys. 11 (1999), 187–242. · Zbl 0957.60101 · doi:10.1142/S0129055X99000088
[36] –. –. –. –., Global bounds for the Lyapunov exponent and the integrated density of states or random Schrödinger operators in one dimension , J. Phys. A 33 (2000), 8231–8240. · Zbl 0970.82019 · doi:10.1088/0305-4470/33/46/306
[37] S. Kotani, “One-dimensional random Schrödinger operators and Herglotz functions” in Probabilistic Methods in Mathematical Physics (Katata/Kyoto, 1985) , ed. K. Ito and N. Ikeda, Academic Press, Boston 1987, 219–250. · Zbl 0647.60073
[38] I. Lifshits, S. Gredeskul, and L. Pastur, Introduction to the Theory of Disordered Systems , translated from the Russian by Eugene Yankovsky, Wiley-Interscience, Wiley, New York, 1988.
[39] V. Marchenko, Concerning the theory of a differential operator of the second order (in Russian), Doklady Akad. Nauk SSSR (N.S.) 72 (1950), 457–460.
[40] –. –. –. –., Some questions of the theory of one-dimensional linear differential operators of the second order, I (in Russian), Trudy Moskov. Mat. Obšč. 1 (1952), 327–420.; English translation in Six Papers in Analysis , Amer. Math. Soc. Transl. Ser. 2 101 , Amer. Math. Soc., Providence, 1973, 1–104.
[41] L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators , Grundlehren Math. Wiss. 297 , Springer, Berlin, 1992. · Zbl 0752.47002
[42] R. del Rio, S. Jitomirskaya, Y. Last, and B. Simon, Operators with singular continuous spectrum, IV: Hausdorf dimension, rank-one perturbations, and localization , J. Anal. Math. 69 (1996), 153–200. · Zbl 0908.47002 · doi:10.1007/BF02787106
[43] C. Shubin, R. Vakilian, and T. Wolff, Some harmonic analysis questions suggested by Anderson-Bernoulli models , Geom. Funct. Anal. 8 (1998), 932–964. · Zbl 0920.42005 · doi:10.1007/s000390050078
[44] B. Simon, A new approach to inverse spectral theory, I: Fundamental formalism , Ann. of Math. (2) 150 (1999), 1029–1057. · Zbl 0945.34013 · doi:10.2307/121061
[45] B. Simon and M. Taylor, Harmonic analysis on \(\SL(2,\mathbbR)\) and smoothness of the density of states in the one-dimensional Anderson model , Comm. Math. Phys. 101 (1985), 1–19. · Zbl 0577.60067 · doi:10.1007/BF01212354
[46] R. Sims and G. Stolz, Localization in one dimensional random media: A scattering theoretic approach , Comm. Math. Phys. 213 (2000), 575–597. · Zbl 1017.82024 · doi:10.1007/s002200000251
[47] P. Stollmann, Wegner estimates and localization for continuum Anderson models with some singular distributions , Arch. Math. (Basel) 75 (2000), 307–311. · Zbl 1068.82523 · doi:10.1007/s000130050508
[48] ——–, Caught by Disorder: Bound States in Random Media , Progr. Math. Phys. 20 , Birkhäuser, Boston, 2001. · Zbl 0983.82016
[49] G. Stolz, Bounded solutions and absolute continuity of Sturm-Liouville operators , J. Math. Anal. Appl. 169 (1992), 210–228. · Zbl 0785.34052 · doi:10.1016/0022-247X(92)90112-Q
[50] –. –. –. –., Non-monotonic random Schrödinger operators: The Anderson model , J. Math. Anal. Appl. 248 (2000), 173–183. · Zbl 0974.47034 · doi:10.1006/jmaa.2000.6885
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.