zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Shannon sampling. II: Connections to learning theory. (English) Zbl 1107.94008
This paper continues the authors’ former study [Bull. Am. Math. Soc., New Ser. 41, No. 3, 279--305 (2004; Zbl 1107.94004)]. They propose a reproducing kernel Hilbert space (the traditional band-limited functions space is also a RKHS) framework to understand the function reconstruction beyond point evaluation. A unified framework for sampling theory and learning theory is initially established in this paper.

94A20Sampling theory
42B10Fourier type transforms, several variables
46E22Hilbert spaces with reproducing kernels
68Q32Computational learning theory
68T05Learning and adaptive systems
68U10Image processing (computing aspects)
41A05Interpolation (approximations and expansions)
62J05Linear regression
Full Text: DOI
[1] Aldroubi, A.; Gröchenig, K.: Non-uniform sampling and reconstruction in shift-invariant spaces. SIAM rev. 43, 585-620 (2001) · Zbl 0995.42022
[2] Aronszajn, N.: Theory of reproducing kernels. Trans. amer. Math. soc. 68, 337-404 (1950) · Zbl 0037.20701
[3] Cucker, F.; Smale, S.: On the mathematical foundations of learning. Bull. amer. Math. soc. 39, 1-49 (2001) · Zbl 0983.68162
[4] Cucker, F.; Smale, S.: Best choices for regularization parameters in learning theory. Found. comput. Math. 2, 413-428 (2002) · Zbl 1057.68085
[5] De Vito, E.; Caponnetto, A.; Rosasco, L.: Model selection for regularized least-squares algorithm in learning theory. Found. comput. Math. 5, 59-85 (2005) · Zbl 1083.68106
[6] Engl, H. W.; Hanke, M.; Neubauer, A.: Regularization of inverse problems. Mathematics and its applications 375 (1996) · Zbl 0859.65054
[7] Evgeniou, T.; Pontil, M.; Poggio, T.: Regularization networks and support vector machines. Adv. comput. Math. 13, 1-50 (2000) · Zbl 0939.68098
[8] Mcdiarmid, C.: Concentration. Probabilistic methods for algorithmic discrete mathematics, 195-248 (1998) · Zbl 0927.60027
[9] Niyogi, P.: The informational complexity of learning. (1998) · Zbl 0976.68125
[10] Poggio, T.; Smale, S.: The mathematics of learning: dealing with data. Notices amer. Math. soc. 50, 537-544 (2003) · Zbl 1083.68100
[11] Smale, S.; Zhou, D. X.: Estimating the approximation error in learning theory. Anal. appl. 1, 17-41 (2003) · Zbl 1079.68089
[12] Smale, S.; Zhou, D. X.: Shannon sampling and function reconstruction from point values. Bull. amer. Math. soc. 41, 279-305 (2004) · Zbl 1107.94007
[13] Unser, M.: Sampling --- 50 years after Shannon. Proc. IEEE 88, 569-587 (2000)
[14] Vapnik, V.: Statistical learning theory. (1998) · Zbl 0935.62007
[15] Wahba, G.: Spline models for observational data. (1990) · Zbl 0813.62001
[16] Y. Ying, McDiarmid inequalities of Bernstein and Bennett forms, Technical Report, City University of Hong Kong, 2004
[17] Young, R. M.: An introduction to non-harmonic Fourier series. (1980) · Zbl 0493.42001
[18] Zhang, T.: Leave-one-out bounds for kernel methods. Neural comput. 15, 1397-1437 (2003) · Zbl 1085.68144