# zbMATH — the first resource for mathematics

On invariants related to non-unique factorizations in block monoids and rings of algebraic integers. (English) Zbl 1108.11074
Summary: Let $$K$$ be a number field, $$R$$ its ring of integers and $$H$$ the set of non-zero principal ideals of $$R$$. For each positive integer $$k$$ the set $$\mathcal {B}_k(H)\subset H$$ denotes the set of principal ideals for which the associated block has at most $$k$$ different factorizations. For the counting functions associated to these sets asymptotic formulae are known. These formulae involve constants that just depend on the ideal class group $$G$$ of $$R$$. Starting from a known combinatorial description for these constants, we use tools from additive group theory, in particular the notion of Davenport’s constant and a classical addition theorem, to investigate them. We determine their precise value in case $$G$$ is an elementary group or a cyclic group of prime power order. For arbitrary $$G$$ we derive (explicit) lower bounds.

##### MSC:
 11N64 Other results on the distribution of values or the characterization of arithmetic functions 11R27 Units and factorization 20D60 Arithmetic and combinatorial problems involving abstract finite groups 20K01 Finite abelian groups
##### Keywords:
factorization; zero-sum sequence; block monoid
Full Text:
##### References:
  CHAPMAN S. T.-FREEZE M.-GAO W. D.-SMITH W. W.: On Davenport’s constant of finite abelian groups. Far East J. Math. Sci. (FJMS) 5 (2002), 47-54. · Zbl 1149.11301  Arithmetical Properties of Commutative Rings and Monoids. (S. T. Chapman, Lecture Notes in Pure and Appl. Math. 241, Dekker/CRC Press, New York, 2005. · Zbl 1061.13001  GAO W. D.: On Davenport’s constant of finite abelian groups with rank three. Discrete Math. 222 (2000), 111-124. · Zbl 0971.20032  GAO W. D.: On a combinatorial problem connected with factorizations. Colloq. Math. 72 (1997), 251-268. · Zbl 0867.11075  GEROLDINGER A.: Ein quantitatives Resultat über Faktorisierungen verschiedener Länge in algebraischen Zahlkörpern. Math. Z. 205 (1990), 159-162. · Zbl 0721.11041  GEROLDINGER A.-HALTER-KOCH F.: Nonunique factorizations in block semigroups and arithmetical applications. Math. Slovaca 42 (1992), 641-661. · Zbl 0765.11045  GEROLDINGER A.-HALTER-KOCH F.: Congruence monoids. Acta Arith. 112 (2004), 263-296. · Zbl 1057.13003  GEROLDINGER A.-HALTER-KOCH F.: Transfer principles in the theory of non-unique factorization. Arithmetical Properties of Commutative Rings and Monoids (S. T. Chapman, Lecture Notes in Pure and Appl. Math. 241, Dekker/CRC Press, New York, 2005, pp. 114-142. · Zbl 1087.13002  GEROLDINGER A.-HALTER-KOCH F.-KACZOROWSKI J.: Non-unique factorizations in orders of global fields. J. Reine Angew. Math. 459 (1995), 89-118. · Zbl 0812.11061  GEROLDINGER A.-KACZOROWSKI J.: Analytic and arithmetic theory of semigroups with divisor theory. Sem. Theor. Nombres Bordeaux (2) 4 (1992), 199-238. · Zbl 0780.11046  GEROLDINGER A.-SCHNEIDER R.: On Davenport’s constant. J. Combin. Theory Ser. A 61 (1992), 147-152. · Zbl 0759.20008  HALTER-KOCH F.: Chebotarev formations and quantitative aspects of nonunique factorizations. Acta Arith. 62 (1992), 173-206. · Zbl 0762.11041  HALTER-KOCH F.: Factorization problems in class number two. Colloq. Math. 65 (1993), 255-265. · Zbl 0816.11053  HALTER-KOCH F.: Ideal Systems. An Introduction to Multiplicative Ideal Theory. Pure and Applied Mathematics, Marcel Dekker 211, Marcel Dekker Inc., New York, 1998. · Zbl 0953.13001  KACZOROWSKI J.: Some remarks on factorization in algebraic number fields. Acta Arith. 43 (1983), 53-68. · Zbl 0526.12006  KACZOROWSKI J.-PERELLI A.: Functional independence of the singularities of a class of Dirichlet series. Amer. J. Math. 120 (1998), 289-303. · Zbl 0905.11036  KACZOROWSKI J.-PINTZ J.: Oscillatory properties of arithmetical functions II. Acta Math. Hungar. 49 (1987), 441-453. · Zbl 0631.10026  NARKIEWICZ W.: Finite abelian groups and factorization problems. Colloq. Math. 42 (1979), 319-330. · Zbl 0514.12004  NARKIEWICZ W.-ŚLIWA J.: Finite abelian groups and factorization problems II. Colloq. Math. 46 (1982), 115-122. · Zbl 1164.20358  NARKIEWICZ W.: Elementary and Analytic Theory of Algebraic Numbers. (3rd, Springer-Verlag, Berlin, 2004. · Zbl 1159.11039  NATHANSON M. B.: Additive Number Theory. Grad. Texts in Math. 165, Springer-Verlag, New York, 1996. · Zbl 0859.11003  OLSON J. E.: A combinatorial problem on finite Abelian groups I. J. Number Theory 1 (1969), 8-10. · Zbl 0169.02003  OLSON J. E.: A combinatorial problem on finite Abelian groups II. J. Number Theory 1 (1969), 195-199. · Zbl 0167.28004  RADZIEJEWSKI M.: On the distribution of algebraic numbers with prescribed factorization properties. Acta Arith. 116 (2005), 153-171. · Zbl 1136.11064  RADZIEJEWSKI M.: Oscillations of error terms associated with certain arithmetical functions. Monatsh. Math. (2005) · Zbl 1099.11056  RADZIEJEWSKI M.-SCHMID W. A.: On the asymptotic behavior of some counting functions. Colloq. Math. · Zbl 1143.11346  SCHMID W. A.: Arithmetic of block monoids. Math. Slovaca 54 (2004), 503-526. · Zbl 1108.11084  SCHMID W. A.: On the asymptotic behavior of some counting functions II. Colloq. Math. · Zbl 1143.11351  VAN EMDE BOAS P.-KRUYSWIJK D.: A combinatorial problem on finite abelian groups III. Technical report, Math. Centrum, Amsterdam, Afd. zuivere Wisk. ZW 1969-008. · Zbl 0245.20046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.