×

The \(\partial \)-Neumann operator on strongly pseudoconvex domain with piecewise smooth boundary. (English) Zbl 1108.35027

The paper deals with the \(\bar \partial \)-Neumann operator \(N\:L^2_{(r,q)}(D)\to L^2_{(r,q)}(D)\), if \(D\subset \mathbb C^n\) is a bounded strongly pseudoconvex domain with piecewise smooth boundary. The authors prove that it can be extended as a bounded operator from the Sobolev space \(H^{-1/2}_{(r,q)}(D)\) into \(H^{1/2}_{(r,q)}(D)\). In particular, \(N\) is a compact operator on \(L^2_{(r,q)}(D)\) and \(H^{-1/2}_{(r,q)}(D)\).

MSC:

35F15 Boundary value problems for linear first-order PDEs
32W05 \(\overline\partial\) and \(\overline\partial\)-Neumann operators
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] BOAS H. P.-STRAUBE E. J.: Equivalence of regularity for the Bergman projection and the \(\overline\partial\)-Neumann operator. Manuscripta Math. 67 (1990), 25-33. · Zbl 0695.32011
[2] BOAS H. P.-STRAUBE E. J.: Sobolev estimates for the \(\overline\partial\)-Neumann operator on domains in Cn admitting a defining function that is plurisubharmonic on the boundary. Math. Z. 206 (1991), 81-88. · Zbl 0696.32008
[3] BOAS H. P.-STRAUBE E. J.: Global regularity of the \(\overline\partial\)-Neumann problem: A Survey of the \(L^2\)-Sobolev theory. Several Complex Variables (M. Schneider et al., Math. Sci. Res. Inst. Publ. 37, Cambridge University Press, Cambridge, 1999, pp. 79-111. · Zbl 0967.32033
[4] BONAMI A.-CHARPENTIER P.: Boundary values for the canonical solution to \(\overline\partial\)-equation and \(W^{1/2} -estimates. Preprint, Bordeaux, 1990.\)
[5] CHEN S.-C-SHAW M.-C: Partial Differential Equations in Several Complex Variables. Stud. Adv. Math. 19, AMS-International Press, Providence, RI, 2001.
[6] EHSANI D.: Analysis of the \(\overline\partial\)-Neumann problem along a straight edge. Preprint Math. CV/0309169. · Zbl 1057.32015
[7] EHSANI D.: Solution of the d-bar-Neumann problem on a bi-disc. Math. Res. Lett. 10 (2003), 523-533. · Zbl 1055.32023
[8] EHSANI D.: Solution of the d-bar-Neumann problem on a non-smooth domain. Indiana Univ. Math. J. 52 (2003), 629-666. · Zbl 1056.32024
[9] ENGLIŠ M.: Pseudolocal estimates for \(\overline\partial\) on general pseudoconvex domains. Indiana Univ. Math. J. 50 (2001), 1593-1607. · Zbl 1044.32029
[10] FOLLAND G. B.-KOHN J. J.: The Neumann Problem for the Cauchy-Riemann Complex. Princeton University Press, Princeton, 1972. · Zbl 0247.35093
[11] GRISVARD P.: Elliptic Problems in Nonsmooth Domains. Monogr. and Stud, in Math. 24. Pitman Advanced Publishing Program, Pitman Publishing Inc., Boston-London-Melbourne, 1985. · Zbl 0695.35060
[12] HENKIN G.-IORDAN A.-KOHN J. J.: Estimations sous-elliptiques pour le problem \(\overline\partial\)-Neumann dans un domaine strictement pseudoconvexe a frontiere lisse par morceaux. C. R. Acad. Sci. Paris Ser. I Math. 323 (1996), 17-22. · Zbl 0861.35066
[13] HÖRMANDER L.: \(L^2\) -estimates and existence theorems for the \(\overline\partial\)-operator. Acta Math. 113 (1965), 89-152. · Zbl 0158.11002
[14] KOHN J. J.: Harmonic integrals on strongly pseudo-convex manifolds I. Ann. Math. (2) 78 (1963), 112-148. · Zbl 0161.09302
[15] KOHN J. J.: Global regularity for \(\overline\partial\) on weakly pseudoconvex manifolds. Trans. Amer. Math. Soc 181 (1973), 273-292. · Zbl 0276.35071
[16] KOHN J. J.: Subellipticity of the \(\overline\partial\)-Neumann problem on pseudoconvex domains: Sufficient conditions. Acta Math. 142 (1979), 79-122. · Zbl 0395.35069
[17] KOHN J. J.: A survey of the \(\overline\partial\) -Neumann problem. Complex Analysis of Several Variables (Yum-Tong Siu, Proc Sympos. Pure Math. 41, Amer. Math. Soc, Providence, RI, 1984, pp. 137-145.
[18] KRANTZ S. G.: Partial Differential Equations and Complex Analysis. CRC Press, Boca Raton, 1992. · Zbl 0852.35001
[19] MICHEL J.-SHAW M.-C.: Subelliptic estimates for the \(\overline\partial\)-Neumann operator on piecewise smooth strictly pseudoconvex domains. Duke Math. J. 93 (1998), 115-128. · Zbl 0953.32027
[20] MICHEL J.-SHAW M.-C: The \(\overline\partial\)-Neumann operator on Lipschitz pseudoconvex domains with plurisubharmonic defining functions. Duke Math. J. 108 (2001), 421-447. · Zbl 1020.32030
[21] SHAW M.-C.: Local existence theorems with estimates for \(\overline\partial_b\) on weakly pseudo-convex \(CR\) manifolds. Math. Ann. 294 (1992), 677-700. · Zbl 0766.32022
[22] STEIN E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton Math. Ser. 30, Princeton Univ. Press, Princeton, NJ, 1970. · Zbl 0207.13501
[23] STRAUBE E. : Plurisubharmonic functions and subellipticity of the \(\overline\partial\)-Neumann problem on nonsmooth domains. Math. Res. Lett. 4 (1997), 459-467. · Zbl 0887.32005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.