×

zbMATH — the first resource for mathematics

Internal DLA and the Stefan problem. (English) Zbl 1108.60318
Summary: Generalized internal diffusion limited aggregation is a stochastic growth model on the lattice in which a finite number of sites act as Poisson sources of particles which then perform symmetric random walks with an attractive zero-range interaction until they reach the first site which has been visited by fewer than \(\alpha\) particles, at which point they stop. Sites on which particles are frozen constitute the occupied set. We prove that in appropriate regimes the particle density has a hydrodynamic limit which is the one-phase Stefan problem. This is then used to study the asymptotic behavior of the occupied set. In two dimensions when the walks are independent with one source at the origin and \(\alpha=1\), we obtain in particular that the occupied set is asymptotically a disc of radius \(K\sqrt{t}\), where \(K\) is the solution of \(\exp (-K^2 /4) = \pi K^2\), settling a conjecture of Lawler, Bramson and Griffeath.

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82C24 Interface problems; diffusion-limited aggregation in time-dependent statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Andjel, E. (1982). Invariant measures for the zero-range processes. Ann. Probab. 10 525-547. · Zbl 0492.60096 · doi:10.1214/aop/1176993765
[2] BenArous, G. and Ramirez, A. Diffusion and saturation processes in random media.
[3] Bramson, M., Griffeath, D. and Lawler, G. (1990). Internal diffusion limited aggregation. Ann. Probab. 20 2117-2140. · Zbl 0762.60096 · doi:10.1214/aop/1176989542
[4] Chayes, L. and Swindle, G. (1996). Hydrodynamic limits for one-dimensional particle systems with moving boundaries. Ann. Probab. 24 559-598. · Zbl 0869.60085 · doi:10.1214/aop/1039639355
[5] Chang, C. C. and Yau, H.-T. (1992). Fluctuations of one-dimensional Ginzburg-Landau models in nonequilibrium. Comm. Math. Phys. 145 209-234. · Zbl 0754.76006 · doi:10.1007/BF02099137
[6] Davies, E. B. (1989). Heat Kernels and Spectral Theory. Cambridge Univ. Press. · Zbl 0699.35006
[7] Diaconis, P. and Fulton, W. (1991). A growth model, game, an algebra, Lagrange inversion, and characteristic classes. Rend. Semin. Mat. Univers. Politecn. Torino 49 95-119. · Zbl 0776.60128
[8] Friedman, A. (1982). Variational Principles and Free Boundary Problems. WileyInterscience, New York. · Zbl 0564.49002
[9] Funaki, T.
[10] Kipnis, C. and Landim, C. (1999). Scaling limits of interacting particle systems. Grundlehren der Mathematischen Wissenschaften 320. Springer, Berlin. · Zbl 0927.60002
[11] Landim, C., and Sethuraman, S. and Varadhan, S. R. S. (1996). Spectral gap for zero-range processes. Ann. Probab. 24 1871-1902. · Zbl 0870.60095 · doi:10.1214/aop/1041903209
[12] Lawler, G. F. (1995). Subdiffusive fluctuations for internal diffusion limited aggregation. Ann. Probab. 23 71-86. · Zbl 0835.60086 · doi:10.1214/aop/1176988377
[13] Liggett, T. (1976). Coupling the simple exclusion process. Ann. Probab. 4 339-356. · Zbl 0339.60091 · doi:10.1214/aop/1176996084
[14] Lions, J.-L. and Magenes, E. (1972). Non-homogeneous boundary value problems and applications. Grundlehren der Mathematischen Wissenschaften 181-182. Springer, Berlin. · Zbl 0223.35039
[15] Lusternik, L. A. and Sobolev, V. J. (1961). Elements of Functional Analysis. Gordon and Breach, New York. · Zbl 0293.46001
[16] Meirmanov, A. M. (1992). The Stefan Problem. de Gruyter, Berlin.
[17] Spohn, H. (1993). Interface motion in models with stochastic dynamics. J. Statist. Phys. 71. · Zbl 0935.82546 · doi:10.1007/BF01049962
[18] Yau, H.-T. (1994). Metastability of Ginzburg-Landau model with a conservation law. J. Statist. Phys. 74 705-742. · Zbl 0834.35120 · doi:10.1007/BF02188577
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.