zbMATH — the first resource for mathematics

Parabolic finite element equations in nonconvex polygonal domains. (English) Zbl 1108.65097
The object of this paper is to show that certain known error estimates for piecewise linear finite element approximations to solution of elliptic equations in nonconvex polygonal domains [cf. A. H. Schatz and L. B. Wahlbin, Math. Comput. 33, 465–492 (1979; Zbl 0417.65053)] carry over to parabolic problems. Nonsmooth data estimate for the homogeneous heat equation and a discussion of mesh refinement in the context of the parabolic equation are given. Some examples of error bounds for fully discrete methods obtained by discretization in time by finite differences of the spatially semidiscrete parabolic equation are also given.

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
Full Text: DOI
[1] I. Babuška, Finite element method for domains with corners, Computing, 6 (1970), pp. 264–273. · Zbl 0224.65031 · doi:10.1007/BF02238811
[2] C. Bacuta, J. H. Bramble, and J. E. Pasciak, New interpolation results and applications to finite element methods for elliptic boundary value problems, East-West J. Numer. Math., 3 (2001), pp. 179–198. · Zbl 0993.65128
[3] C. Bacuta, J. H. Bramble, and J. Xu, Regularity estimates for elliptic boundary value problems in Besov spaces, Math. Comp., 72 (2003), pp. 1577–1595. · Zbl 1031.65133 · doi:10.1090/S0025-5718-02-01502-8
[4] N. Bakaev, V. Thomée, and L. B. Wahlbin, Maximum-norm estimates for resolvents of elliptic finite element operators, Math. Comp., 72 (2003), pp. 1597–1610. · Zbl 1028.65113 · doi:10.1090/S0025-5718-02-01488-6
[5] P. Grisvard, Caractérisation de quelques éspaces d’interpolation, Arch. Rat. Mech. Anal., 25 (1967), pp. 41–63. · Zbl 0187.05901 · doi:10.1007/BF00281421
[6] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, MA, 1985. · Zbl 0695.35060
[7] P. Grisvard, Singularities in Boundary Value Problems, Masson/Springer, Paris–Berlin, 1992. · Zbl 0766.35001
[8] B. R. Kellogg, Interpolation between subspaces of a Hilbert space, Technical note BN–719, Institute for Fluid Dynamics and Applied Mathematics, College Park, 1971. · Zbl 0215.37504
[9] V. G. Maz’ya and B. A. Plamenevskii, On the coefficients in the asymptotics of solutions of elliptic boundary value problems near the edge, Sov. Math. Doklady, 17 (1976), pp. 970–974.
[10] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. · Zbl 0516.47023
[11] G. Raugel, Résolution numérique par une méthode d’élements finis du problème de Dirichlet pour le laplacien dans un polygone, C. R. Acad. Sci. Paris, Sér. A, 286 (1977), pp. 791–794. · Zbl 0377.65058
[12] A. H. Schatz, A weak discrete maximum principle and stabiity of the finite element method in L on plane polygonal domains, I, Math. Comp., 34 (1980), pp. 77–91. · Zbl 0425.65060
[13] A. H. Schatz, V. Thomée, and L. B. Wahlbin, Maximum norm stability and error estimates in parabolic finite element equations, Comm. Pure Appl. Math., 33 (1980), pp. 265–304. · Zbl 0429.65103 · doi:10.1002/cpa.3160330305
[14] A. H. Schatz and L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains, Part 2, Refinements, Math. Comp., 33 (1979), pp. 465–492. · Zbl 0417.65053
[15] B. Stewart, Generation of analytic semigroups by strongly elliptic operators, Trans. Amer. Math. Soc., 199 (1974), pp. 141–161. · Zbl 0264.35043 · doi:10.1090/S0002-9947-1974-0358067-4
[16] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, 2nd ed., Springer, Berlin–Heidelberg, 2006. · Zbl 1105.65102
[17] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam–New-York, 1978.
[18] L. B. Wahlbin, On the sharpness of certain local estimates for H 1 0 projections into finite element spaces: Influence of a reentrant corner, Math. Comp., 42 (1984), pp. 1–8. · Zbl 0539.65078
[19] L. B. Wahlbin, Local Behavior in Finite Element Methods, in Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part 1), P. G. Ciarlet and J. L. Lions, eds., North-Holland, Amsterdam–New-York, 1991, pp. 353–522. · Zbl 0875.65089
[20] M. F. Wheeler, A priori L 2 error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal., 10 (1973), pp. 723–759. · Zbl 0232.35060
[21] J.-L. Zolesio, Interpolation d’éspaces de Sobolev avec conditions aux limites de type mélé, C. R. Acad. Sci. Paris, 285 (1977), pp. 621–624. · Zbl 0376.46018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.