zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Homology of generalized partition posets. (English) Zbl 1109.18002
For an operad (it is a monoid in a monoidal category $({\cal S}\text{-Mod},\circ ,1)$ of ${\cal S}$-modules) finite partition posets are defined. A finite poset with exactly one minimal and exactly one maximal element such that maximal chains have the same length and its homology is concentrated in top dimension is called Cohen-Macauley. The main result says that an operad is Kozsul if and only if its posets are Cohen-Macauley. This characterization allows us to compute homology of Cohen-Macauley posets (the homology groups are isomorphic to the Kozsul dual cooperad) and provides combinatorial methods for recognization of Kozsul operads. Many examples illustrating these results are presented.

05E25Group actions on posets, etc. (MSC2000)
18G35Chain complexes (homological algebra)
55U10Semisimplicial complexes
Full Text: DOI arXiv
[1] Björner, A.: Shellable and Cohen--Macaulay partially ordered sets. Trans. amer. Math. soc. 260, 159-183 (1980) · Zbl 0441.06002
[2] Björner, A.; Garsia, A. M.; Stanley, R. P.: An introduction to Cohen--Macaulay partially ordered sets. Ordered sets, 583-615 (1982) · Zbl 0491.06005
[3] Chapoton, F.: Un endofoncteur de la catégorie des opérades. Lecture notes in mathematics 1763 (2001)
[4] Chapoton, F.: Opérades différentielles graduées sur LES simplexes et LES permutoèdres. Bull. soc. Math. France 130, No. 2, 233-251 (2002) · Zbl 1044.18007
[5] Chapoton, F.; Livernet, M.: Pre-Lie algebras and the rooted trees operad. Internat. res. Notices 8, 395-408 (2001) · Zbl 1053.17001
[6] F. Chapoton, B. Vallette, Pointed and multi-pointed partitions of type A and B, J. Algebraic Comb. (in press). math.QA/0410051 · Zbl 1093.05071
[7] Curtis, E. B.: Simplicial homotopy theory. Adv. math. 6, 107-209 (1971) · Zbl 0225.55002
[8] Cibils, C.: Cohomology of incidence algebras and simplicial complexes. J. pure appl. Algebra 56, 221-232 (1989) · Zbl 0683.16018
[9] Fresse, B.: Koszul duality of operads and homology of partition posets. Contemp. math. 346 (2004) · Zbl 1077.18007
[10] A.V. Gnedbaye, Opérades des algèbres (k+1)-aires, in: Operads: Proceedings of Renaissance Conferences, Hartford/Luminy, 1995, in: Contemp. Math., vol. 202, 1997, pp. 83--113
[11] Ginzburg, V.; Kapranov, M. M.: Koszul duality for operads. Duke math. J. 76, 203-272 (1995) · Zbl 0855.18006
[12] Hanlon, P.; Wachs, M.: On Lie k-algebras. Adv. math. 113, 206-236 (1995) · Zbl 0844.17001
[13] Loday, J. -L.: La renaissance des opérades, séminaire bourbaki (Exp. No. 792). Astérisque 237, 47-74 (1996)
[14] Loday, J. -L.: Dialgebras. Lecture notes in mathematics 1763 (2001)
[15] Loday, J. -L.; Ronco, M.: Trialgebras and families of polytopes. Contemp. math. 346 (2004) · Zbl 1065.18007
[16] Lane, S. Mac: Categories for the working mathematician. Oxford mathematical monographs (1995)
[17] Markl, M.: Distributive laws and koszulness. Ann. inst. Fourier 46, No. 2, 307-323 (1996) · Zbl 0853.18005
[18] Markl, M.; Shnider, S.; Stasheff, J.: Operads in algebra, topology and physics. Mathematical surveys and monographs 96 (2002) · Zbl 1017.18001
[19] May, J. P.: Simplicial objects in algebraic topology. Chicago lectures in mathematics (1993) · Zbl 0165.26004
[20] Polo, P.: On Cohen--Macaulay posets, Koszul algebras and certain modules associated to Schubert varieties. Bull. London math. Soc. 27, 425-434 (1995) · Zbl 0834.06007
[21] Quillen, D.: Homotopy properties of the poset of non-trivial p-subgroups of a group. Adv. math. 28, 101-128 (1978) · Zbl 0388.55007
[22] Robinson, A.; Whitehouse, S.: The tree representation of ${\Sigma}$n+1. J. pure appl. Algebra 111, 245-253 (1996) · Zbl 0865.55010
[23] Stanley, R. P.: Enumerative combinatorics. (1997) · Zbl 0889.05001
[24] B. Vallette, A Koszul duality for props, Trans. A.M.S. (in press). math.AT/0411542 · Zbl 1140.18006
[25] Woodock, D.: Cohen--Macaulay complexes and Koszul rings. Bull. London math. Soc. 57, 398-410 (1998)