×

Moduli spaces of \(d\)-connections and difference Painlevé equations. (English) Zbl 1109.39019

Authors’ abstract: We show that difference Painlevé equations can be interpreted as ismorphisms of moduli spaces of difference connections on \(\mathbb P^1\) with given singularity structure. In particular, we derive a difference equation that lifts to an isomorphism between \(A_2^{(1)*}\)-surfaces is in H. Sakai’s classification [Commun. Math. Phys. 220, No. 1, 165–229 (2001; Zbl 1010.34083)]; it degenerates to both difference Painlevé V and classical (differential) Painlevé VI equations. This difference equation has been known before under the name of asymmetric discrete Painlevé IV equation.
Reviewer: Eduardo Liz (Vigo)

MSC:

39A12 Discrete version of topics in analysis
39A10 Additive difference equations
14H60 Vector bundles on curves and their moduli
34M55 Painlevé and other special ordinary differential equations in the complex domain; classification, hierarchies

Citations:

Zbl 1010.34083
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] M. Adler and P. Van Moerbeke, Recursion relations for unitary integrals, combinatorics and the Toeplitz lattice, Comm. Math. Phys. 237 (2003), 397–440. · Zbl 1090.37051
[2] D. Arinkin and S. Lysenko, Isomorphisms between moduli spaces of, SL \((2)\)-bundles with connections on \({\mathbb P}^1\setminus\{x_1,\ldots, x_4\}\), Math. Res. Lett. 4 (1997), 181–190. · Zbl 0916.14024
[3] -, On the moduli of,\({\mathrm SL}(2)\) -bundles with connections on \({\mathbb P}^1\setminus\{x_1,\ldots,x_4\}\), Internat. Math. Res. Notices 1997 , no. 19, 983–999. · Zbl 0918.14015
[4] J. Baik, “Riemann-Hilbert problems for last passage percolation” in Recent Developments in Integrable Systems and Riemann-Hilbert Problems (Birmingham, Ala., 2000) , Contemp. Math. 326 , Amer. Math. Soc., Providence, 2003, 1–21. · Zbl 1040.60080
[5] A. Borodin, Discrete gap probabilities and discrete Painlevé equations, Duke Math. J. 117 (2003), 489–542. · Zbl 1034.39013
[6] -, Isomonodromy transformations of linear systems of difference equations, Ann. of Math. (2) 160 (2004), 1141–1182. JSTOR: · Zbl 1085.39001
[7] A. Borodin and D. Boyarchenko, Distribution of the first particle in discrete orthogonal polynomial ensembles, Comm. Math. Phys. 234 (2003), 287–338. · Zbl 1029.82016
[8] P. J. Forrester and N. S. Witte, Application of the \(\tau\) -function theory of Painlevé equations to random matrices: PIV, PII and the GUE, Comm. Math. Phys. 219 (2001), 357–398. · Zbl 1042.82019
[9] -, Application of the \(\tau\) -function theory of Painlevé equations to random matrices: \(\mathrm P_V\), \(\mathrm P_ {III}\), the LUE, JUE, and CUE, Comm. Pure Appl. Math. 55 (2002), 679–727. · Zbl 1029.34087
[10] -, Discrete Painlevé equations and random matrix averages, Nonlinearity 16 (2003), 1919–1944. · Zbl 1071.15026
[11] -, Application of the \(\tau\) -function theory of Painlevé equations to random matrices: \(\mathrm P_ {\mathrm VI}\), the JUE, CyUE, cJUE and scaled limits, Nagoya Math. J. 174 (2004), 29–114. · Zbl 1056.15023
[12] -, Discrete Painlevé equations, orthogonal polynomials on the unit circle, and \(N\) -recurrences for averages over \(U(N)\) –.-\({\mathrm P}_ {{\mathrm III}'}\) and \({\mathrm P}_ {\mathrm V}\;\tau\)-functions, Int. Math. Res. Not. 2004 , no. 4, 160–183. · Zbl 1086.39021
[13] B. Grammaticos, F. W. Nijhoff, and A. Ramani, “Discrete Painlevé equations” in The Painlevé Property , CRM Ser. Math. Phys., Springer, New York, 1999, 413–516. · Zbl 1014.39013
[14] B. Grammaticos, Y. Ohta, A. Ramani, and H. Sakai, Degeneration through coalescence of the \(q\)-Painlevé VI equation, J. Phys. A 31 (1998), 3545–3558. · Zbl 0932.39017
[15] B. Grammaticos, A. Ramani, and Y. Ohta, A unified description of the asymmetric \(q\text{-P}_ {\mathrm V}\) and \(d\text{-P}_ {\mathrm IV}\) equations and their Schlesinger transformations, J. Nonlinear Math. Phys. 10 (2003), 215–228. · Zbl 1034.34104
[16] M.-A. Inaba, K. Iwasaki, and M.-H. Saito, Bäcklund transformations of the sixth Painlevé equation in terms of Riemann-Hilbert correspondence, Int. Math. Res. Not. 2004 , no. 1, 1–30. · Zbl 1087.34062
[17] -, Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI , part I, · Zbl 1127.34055
[18] M. Jimbo and T. Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II, Phys. D 2 (1981), 407–448. · Zbl 1194.34166
[19] M. Jimbo and H. Sakai, A \(q\) -analog of the sixth Painlevé equation, Lett. Math. Phys. 38 (1996), 145–154. · Zbl 0859.39006
[20] I. M. Krichever, Analytic theory of difference equations with rational and elliptic coefficients and the Riemann-Hilbert problem, Uspekhi Mat. Nauk 59 (2004), no. 6, 111–150.; English translation in Russian Math. Surveys 59 (2004), 1117–1154. · Zbl 1075.39012
[21] G. Laumon, Transformation de Fourier généralisée, · Zbl 1097.14027
[22] M. Noumi and Y. Yamada, Affine Weyl groups, discrete dynamical systems and Painlevé equations, Comm. Math. Phys. 199 (1998), 281–295. · Zbl 0952.37031
[23] Y. Ohta, A. Ramani, B. Grammaticos, and K. M. Tamizhmani, From discrete to continuous Painlevé equations: A bilinear approach, Phys. Lett. A 216 (1996), 255–261. · Zbl 0972.35529
[24] K. Okamoto, Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé, Japan. J. Math. (N.S.) 5 (1979), 1–79. · Zbl 0426.58017
[25] -, Isomonodromic deformation and Painlevé equations, and the Garnier system, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), 575–618. · Zbl 0631.34011
[26] A. Ramani, B. Grammaticos, and Y. Ohta, A geometrical description of the discrete Painlevé VI and V equations, Comm. Math. Phys. 217 (2001), 315–329. · Zbl 0980.39010
[27] M.-H. Saito and T. Takebe, Classification of Okamoto-Painlevé pairs, Kobe J. Math. 19 (2002), 21–50. · Zbl 1055.34144
[28] M.-H. Saito, T. Takebe, and H. Terajima, Deformation of Okamoto-Painlevé pairs and Painlevé equations, J. Algebraic Geom. 11 (2002), 311–362. · Zbl 1022.34079
[29] H. Sakai, Rational surfaces associated with affine root systems and geometry of the Painlevé equations. Comm. Math. Phys. 220 (2001), 165–229. · Zbl 1010.34083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.