zbMATH — the first resource for mathematics

Boundary layers and KPP fronts in a cellular flow. (English) Zbl 1109.76064
Summary: We study an eigenvalue problem associated with a reaction-diffusion-advection equation of KPP type in a cellular flow. We obtain upper and lower bounds on the eigenvalues in the regime of a large flow amplitude \(A\gg 1\). It follows that the minimal pulsating traveling front speed \(c_{*}( A)\) satisfies the upper and lower bounds \(C_{1} A^{1/4}\leqq c_{*}( A)\leqq C_{2}A^{1/4}\). Physically, the speed enhancement is related to the boundary layer structure of the associated eigenfunction – accordingly, we establish an “averaging along the streamlines” principle for the unique positive eigenfunction.

76V05 Reaction effects in flows
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI
[1] Abel, M.; Celani, A.; Vergni, D.; Vulpiani, A., Front propagation in laminar flows, Phys. Rev. E, 3, 046307-043620, (2001)
[2] Abel, M.; Cencini, M.; Vergni, D.; Vulpiani, A., Front speed enhancement in cellular flows, Chaos, 12, 481-488, (2003) · Zbl 1080.80501
[3] Audoly, B.; Berestycki, H.; Pomeau, Y., Réaction-diffusion en écoulement stationnaire rapide, C. R. Math. Acad. Sci. Paris, 328, 255-262, (2000) · Zbl 0992.76097
[4] Berestycki, H.: The influence of advection on the propagation of fronts in reaction-diffusion equations. Nonlinear PDEs in Condensed Matter and Reactive Flows, NATO Science Series C, 569 (Berestycki, H., Pomeau, Y. Eds.), Kluwer, Doordrecht, 2003
[5] Berestycki, H.; Hamel, F., Front propagation in periodic excitable media, Comm. Pure Appl. Math., 55, 949-1032, (2002) · Zbl 1024.37054
[6] Berestycki, H.; Hamel, F.; Nadirashvili, N., The speed of propagation for KPP type problems, I - Periodic framework. Jour, Eur. Math. Soc. (JEMS), 7, 173-213, (2005) · Zbl 1142.35464
[7] Berestycki, H.; Hamel, F.; Nadirashvili, N., Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena, Comm. Math. Phys., 253, 451-480, (2005) · Zbl 1123.35033
[8] Constantin, P.; Kiselev, A.; Oberman, A.; Ryzhik, L., Bulk burning rate in passive-reactive diffusion, Arch. Ration. Mech. Anal., 154, 53-91, (2001) · Zbl 0979.76093
[9] Fannjiang, A.; Papanicolaou, G., Convection enhanced diffusion for periodic flows, SIAM J. Appl. Math., 54, 333-408, (1994) · Zbl 0796.76084
[10] Freidlin, M.; Gärtner, J., On the propagation of concentration waves in periodic and random media, Soviet Math. Dokl., 20, 1282-1286, (1979) · Zbl 0447.60060
[11] Freidlin, M., Reaction-diffusion in incompressible fluid: asymptotic problems, J. Differential Equations, 179, 44-96, (2002) · Zbl 1043.35079
[12] Freidlin, M., Wentzell, A.: Random perturbations of Hamiltonian systems. Memoir AMS, 1994
[13] Heinze, S.: Preprint, 2002
[14] Heinze, S., Diffusion-Advection in Cellular Flows with Large Péclet Numbers, Arch. Ration. Mech. Anal., 168, 329-342, (2003) · Zbl 1044.76061
[15] Heinze, S.: Large convection limits for KPP fronts, Preprint, 2005
[16] Heinze, S.; Papanicolaou, G.; Stevens, A., Variational principles for propagation speeds in inhomogeneous media, SIAM J. Appl. Math., 62, 129-148, (2001) · Zbl 0995.35031
[17] Kiselev, A.; Ryzhik, L., Enhancement of the traveling front speeds in reaction-diffusion equations with advection, Ann. Inst. H Poincaré Anal Non Linéaire, 18, 309-358, (2001) · Zbl 1002.35069
[18] Koralov, L., Random perturbations of two-dimensional Hamiltonian flows, Probab. Theory Related Fields, 129, 37-62, (2004) · Zbl 1103.60068
[19] Novikov, A.; Papanicolaou, G.; Ryzhik, L., Boundary layers for cellular flows at high Péclet numbers, Comm. Pure Appl. Math., 58, 867-922, (2005) · Zbl 1112.76023
[20] Sowers, R., A boundary layer theory for diffusively perturbed transport around a heteroclinic cycle, Comm. Pure Appl. Math., 58, 30-84, (2005) · Zbl 1073.37073
[21] Vladimirova, N.; Constantin, P.; Kiselev, A.; Ruchayskiy, O.; Ryzhik, L., Flame Enhancement and Quenching in Fluid Flows, Combust. Theory Model., 7, 487-508, (2003) · Zbl 1068.76570
[22] Weinberger, H., On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., 45, 511-548, (2002) · Zbl 1058.92036
[23] Xin, J., Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media, J. Stat. Phys., 73, 893-926, (1993) · Zbl 1102.35340
[24] Xin, J., Analysis and modeling of front propagation in heterogeneous media, SIAM Rev., 42, 161-230, (2000) · Zbl 0951.35060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.