Tomaschitz, Roman Superluminal cascade spectra of TeV \(\gamma\)-ray sources. (English) Zbl 1109.85306 Ann. Phys. 322, No. 3, 677-700 (2007). Summary: Astrophysical radiation sources are scrutinized in search of superluminal \(\gamma\)-rays. The tachyonic spectral densities generated by ultra-relativistic electrons in uniform motion are fitted to the high-energy spectra of Galactic supernova remnants, such as RX J0852.0 - 4622 and the pulsar wind nebulae in G0.9+0.1 and MSH 15-52. The superluminal spectral maps of the unidentified TeV \(\gamma\)-ray sources HESS J1303 - 631, TeV J2032+4130 and HESS J1825 - 137 are inferred from EGRET, HEGRA and HESS data. Tachyonic cascade spectra are quite capable of generating the spectral curvature seen in double-logarithmic plots, as well as the extended spectral plateaus defined by EGRET flux points in the GeV band. The curvature of the TeV spectra is intrinsic, caused by the Boltzmann factor in the source densities. The spectral averaging with thermal and exponentially cut power-law electron densities can be done in closed form, and systematic high- and low-temperature expansions of the superluminal spectral densities are derived. Estimates on the electron/proton populations generating the tachyon flux are obtained from the spectral fits, such as power-law indices, temperature and source counts. The cutoff temperatures of the source densities suggest ultra-high-energy protons in MSH 15-52, HESS J1825 - 137 and TeV J2032+4130. Cited in 2 Documents MSC: 85A25 Radiative transfer in astronomy and astrophysics 83C50 Electromagnetic fields in general relativity and gravitational theory Keywords:superluminal radiation; Tachyonic \(\gamma\)-rays; cosmic rays; spectral averaging; spectral curvature × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Sommerfeld, A., Proc. Konink. Akad. Wet. (Sec. Sci.), 7, 346 (1904) [2] Tanaka, S., Prog. Theor. Phys., 24, 171 (1960) [3] Terletsky, Ya. P., Sov. Phys.-Dokl., 5, 782 (1961) [4] Feinberg, G., Phys. Rev., 159, 1089 (1967) [5] Tomaschitz, R., Eur. Phys. J. B, 17, 523 (2000) [6] Goldhaber, A. S.; Nieto, M. M., Rev. Mod. Phys., 43, 277 (1971) [7] Tomaschitz, R., Eur. Phys. J. D, 32, 241 (2005) [8] Wheeler, J. A.; Feynman, R. P., Rev. Mod. Phys., 17, 157 (1945) [9] Tomaschitz, R., Physica A, 320, 329 (2003) [10] Tomaschitz, R., Class. Quantum Grav., 18, 4395 (2001) · Zbl 0992.83065 [11] Feinberg, G., Sci. Am., 222, 2, 69 (1970) [12] Boulware, D. G., Phys. Rev. D, 1, 2426 (1970) [13] Newton, R., Science, 167, 1569 (1970) [14] Pirani, F. A.E., Phys. Rev. D, 1, 3224 (1970) [15] Whittaker, E., A History of the Theories of Aether and Electricity (1951), Thomas Nelson & Sons: Thomas Nelson & Sons London · Zbl 0043.24503 [16] Tomaschitz, R., Physica A, 307, 375 (2002) · Zbl 0994.82047 [17] Tomaschitz, R., Eur. Phys. J. C, 45, 493 (2006) [18] Band, D., Astrophys. J., 413, 281 (1993) [19] Lloyd, N. M.; Petrosian, V., Astrophys. J., 511, 550 (1999) [20] Petrosian, V., Astrophys. J., 557, 560 (2001) [21] Magnus, W.; Oberhettinger, F.; Soni, R. P., Formulas and Theorems for the Special Functions of Mathematical Physics (1966), Springer: Springer New York · Zbl 0143.08502 [22] Aharonian, F., Astron. Astrophys., 432, L25 (2005) [23] Sidoli, L., Astron. Astrophys., 361, 719 (2000) [24] Gaensler, B. M.; Pivovaroff, M. J.; Garmire, G. P., Astrophys. J., 556, L107 (2001) [25] Katagiri, H., Astrophys. J., 619, L163 (2005) [26] Aharonian, F., Astron. Astrophys., 437, L7 (2005) [27] Tsuchiya, K., Astrophys. J., 606, L115 (2004) [28] Aharonian, F., Astron. Astrophys., 425, L13 (2004) [29] Iyudin, A. F., Nature, 396, 142 (1998) [30] Tsunemi, H., Publ. Astron. Soc. Japan, 52, 887 (2000) [31] Slane, P., Astrophys. J., 548, 814 (2001) [32] Mereghetti, S., Astrophys. J., 548, L213 (2001) [33] Kargaltsev, O., Astrophys. J., 580, 1060 (2002) [34] Iyudin, A. F., Astron. Astrophys., 429, 225 (2005) [35] Aharonian, F., Astron. Astrophys., 439, 1013 (2005) [36] Mukherjee, R.; Halpern, J. P., Astrophys. J., 629, 1017 (2005) [37] Aharonian, F., Astron. Astrophys., 435, L17 (2005) [38] Sako, T., Astrophys. J., 537, 422 (2000) [39] Dubner, G. M., Astron. J., 123, 337 (2002) [40] Manchester, R. N., Astron. J., 129, 1993 (2005), http://www.atnf.csiro.au/research/pulsar/psrcat/ [41] Aharonian, F. A., Astron. Astrophys., 460, 365 (2006) [42] Hartman, R. C., Astrophys. J. Suppl., 123, 79 (1999) [43] Nolan, P. L., Astrophys. J., 597, 615 (2003) [44] Gaensler, B. M., Astrophys. J., 588, 441 (2003) [45] Aharonian, F., Astron. Astrophys., 393, L37 (2002) [46] Aharonian, F., Astron. Astrophys., 431, 197 (2005) [47] Mukherjee, R., Astrophys. J., 589, 487 (2003) [48] Wachter, S., Astrophys. J., 621, 393 (2005) [49] Tomaschitz, R., Astropart. Phys., 23, 117 (2005) [50] Tomaschitz, R., Astropart. Phys. (2007) [51] Tomaschitz, R., J. Phys. A, 38, 2201 (2005) · Zbl 1060.81615 [52] de Jager, O. C., Astrophys. J., 457, 253 (1996) [53] Atoyan, A.; Buckley, J.; Krawczynski, H., Astrophys. J., 642, L153 (2006) [54] Dermer, C. D.; Bötcher, M., Astrophys. J., 643, 1081 (2006) [55] Tomaschitz, R., Eur. Phys. J. C (2007) [56] Nagano, M.; Watson, A. A., Rev. Mod. Phys., 72, 689 (2000) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.