Peskir, Goran On the American option problem. (English) Zbl 1109.91028 Math. Finance 15, No. 1, 169-181 (2005). Summary: We show how the change-of-variable formula with local time on curves derived recently in G. Peskir [J. Theor. Probab. 18, No. 3, 499-535 (2005; Zbl 1085.60033)] can be used to prove that the optimal stopping boundary for the American put option can be characterized as the unique solution of a nonlinear integral equation arising from the early exercise premium representation. Cited in 3 ReviewsCited in 68 Documents MSC: 91G20 Derivative securities (option pricing, hedging, etc.) 60G40 Stopping times; optimal stopping problems; gambling theory Keywords:arbitrage-free price; optimal stopping; smooth fit; geometric Brownian motion; free-boundary problem; nonlinear integral equation; local time-space calculus; curved boundary Citations:Zbl 1085.60033 PDF BibTeX XML Cite \textit{G. Peskir}, Math. Finance 15, No. 1, 169--181 (2005; Zbl 1109.91028) Full Text: DOI References: [1] Bather J., Adv. Appl. Probab 2 pp 259– (1970) [2] Carr P., Math. Finance 2 pp 78– (1992) [3] Chernoff H., Sankhya Ser. A 30 pp 221– (1968) [4] Dynkin E. B., Soviet Math. Dokl 4 pp 627– (1963) [5] Friedman A., J. Math. Mech 8 pp 499– (1959) [6] Grigelionis B. I., Theory Prob. Appl 11 pp 541– (1966) [7] Little T., J. Computat. Finance 3 pp 73– (2000) [8] Jacka S. D., Math. Finance 1 pp 1– (1991) [9] Jacka S. D., Ann. Prob 21 pp 329– (1993) [10] Karatzas I., Methods of Mathematical Finance (1998) · Zbl 0941.91032 [11] DOI: 10.1093/rfs/3.4.547 [12] Kolodner I. I., Comm. Pure Appl. Math 9 pp 1– (1956) [13] McKean H. P., Ind. Mgmt. Rev 6 pp 32– (1965) [14] Miranker W. L., Quart. Appl. Math 16 pp 121– (1958) [15] Myneni R., Ann. Appl. Probab 2 pp 1– (1992) [16] Peskir G., J. Integral Equations Appl 14 pp 397– (2002) · Zbl 1044.60076 [17] Peskir G., J. Theoret. Probab. (2002) [18] Peskir G., Finance Stoch (2003) [19] Snell J. L., Trans. Amer. Math. Soc 73 pp 293– (1952) [20] Tricomi F. G., Integral Equations (1957) · Zbl 0078.09404 [21] Van Moerbeke P., Arch. Rational Mech. Anal 60 pp 101– (1976) · Zbl 0336.35047 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.