Chen, Fengde Permanence of a discrete \(n\)-species food-chain system with time delays. (English) Zbl 1109.92048 Appl. Math. Comput. 185, No. 1, 719-726 (2007). From the paper: We consider the permanence of the following nonautonomous discrete \(n\)-species food-chain system with time delays of the form: \[ x_1(k+1)= x_1(k)\exp\left\{r_1(k)-a_{11}(k)x_1(k-\tau_{11})-\frac{a_{12}(k)x_2(k)}{1+m_1 x_1(k)}\right\}, \]\[ x_j(k+1)=x_j(k)\exp\left\{-r_j(k)+\frac{a_{j,j-1}(k)x_{j-1} (k-\tau_{j,j-1})}{1+m_{j-1}x_{j-1}(k-\tau_{j,j-1})}-a_{jj}(k)x_j(k-\tau_{jj})\right.+ \]\[ \left.-\frac{a_{j,j+1}(k)x_{j+1}(k)}{1+m_{j+1}x_{j+1}(k)}\right\},\quad \text{with}\;1<j<n, \]\[ x_n(k+1) =x_n(k)\exp\left\{-r_n(k)+\frac{a_{n,n-1}(k)x_{n-1}(k-\tau_{n,n-1})}{1+m_{n-1} x_{n-1}(k-\tau_{n,n-1})}-a_{nn}(k)x_n(k-\tau_{nn})\right\}, \] where \(x_i(k)\) \((i=1,\dots,n)\) is the density of the \(i\)th species \(X_i\). By applying the comparison theorem for difference equations, sufficient conditions are obtained for the permanence of the system. Cited in 25 Documents MSC: 92D40 Ecology 39A11 Stability of difference equations (MSC2000) 37N25 Dynamical systems in biology Keywords:food-chain system; permanence; discrete; comparison theorem PDF BibTeX XML Cite \textit{F. Chen}, Appl. Math. Comput. 185, No. 1, 719--726 (2007; Zbl 1109.92048) Full Text: DOI References: [1] Liu, Q. M.; Zhou, H. Y., Existence and global attractivity of periodic solutions in \(n\)-species food-chain system with time delays, J. Inequal. Pure Appl. Math., 4, 5, 1-17 (2003) · Zbl 1069.34063 [2] Li, Y. K.; Lu, L. H., Positive periodic solutions of discrete \(n\)-species food-chain systems, Appl. Math. Comput., 167, 1, 324-344 (2005) · Zbl 1087.39012 [3] Agarwal, R. P., Difference Equations and Inequalities: Theory, Method and Applications, Monographs and Textbooks in Pure and Applied Mathematics, vol. 228 (2000), Marcel Dekker: Marcel Dekker New York [4] Agarwal, R. P.; Wong, P. J.Y., Advance Topics in Difference Equations (1997), Kluwer Publisher: Kluwer Publisher Dordrecht · Zbl 0914.39005 [5] Freedman, H. I., Deterministic Mathematics Models in Population Ecology (1980), Marcel Dekker: Marcel Dekker New York · Zbl 0448.92023 [6] Murry, J. D., Mathematical Biology (1989), Springer-Verlag: Springer-Verlag New York [7] Gopalsamy, K., Stability and Oscillations in Delay Differential Equations of Population Dynamics (1992), Kluwer Academic Publishers: Kluwer Academic Publishers Boston · Zbl 0752.34039 [8] Chen, Y. M.; Zhou, Z., Stable periodic solution of a discrete periodic Lotka-Volterra competition system, J. Math. Anal. Appl., 277, 1, 358-366 (2003) · Zbl 1019.39004 [9] Zhou, Z.; Zou, X., Stable periodic solutions in a discrete periodic logistic equation, Appl. Math. Lett., 16, 2, 165-171 (2003) · Zbl 1049.39017 [10] Huo, H. F.; Li, W. T., Permanence and global stability for nonautonomous discrete model of plankton allelopathy, Appl. Math. Lett., 17, 9, 1007-1013 (2004) · Zbl 1067.39009 [11] Yang, X. T., Uniform persistence and periodic solutions for a discrete predator-prey system with delays, J. Math. Anal. Appl., 316, 1, 161-177 (2006) · Zbl 1107.39017 [12] Fan, Y. H.; Li, W. T., Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response, J. Math. Anal. Appl., 299, 2, 357-374 (2004) · Zbl 1063.39013 [13] Fan, M.; Wang, K., Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system, Math. Comput. Modell., 35, 9-10, 951-961 (2002) · Zbl 1050.39022 [16] Chen, F. D.; Lin, F. X.; Chen, X. X., Sufficient conditions for the existence of positive periodic solutions of a class of neutral delay models with feedback control, Appl. Math. Comput., 158, 1, 45-68 (2004) · Zbl 1096.93017 [17] Chen, F. D., Positive periodic solutions of neutral Lotka-Volterra system with feedback control, Appl. Math. Comput., 162, 3, 1279-1302 (2005) · Zbl 1125.93031 [18] Chen, F. D., Positive periodic solutions of a class of non-autonomous single species population model with delays and feedback control, Acta Math. Sinica, 21, 6, 1319-1336 (2005) · Zbl 1110.34049 [19] Chen, F. D., The permanence and global attractivity of Lotka-Volterra competition system with feedback controls, Nonlinear Analysis: Real World Applications, 7, 1, 133-143 (2006) · Zbl 1103.34038 [20] Chen, F. D., Permanence in nonautonomous multi-species predator-prey system with feedback controls, Appl. Math. Comput., 173, 2, 694-709 (2006) · Zbl 1087.92059 [21] Chen, F. D., On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay, J. Comput. Appl. Math., 180, 1, 33-49 (2005) · Zbl 1061.92058 [22] Wang, L.; Wang, M. Q., Ordinary Difference Equation (1991), Xinjiang University Press: Xinjiang University Press China, (in Chinese) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.