×

zbMATH — the first resource for mathematics

\(nX\)-complementary generations of the Harada-Norton group \(HN\). (English) Zbl 1110.20300
From the text: Let \(G\) be a finite group and \(nX\) a conjugacy class of elements of order \(n\) in \(G\). \(G\) is called \(nX\)-complementary generated if, for every \(x\in G-\{1\}\), there is a \(y\in nX\) such that \(G=\langle x,y\rangle\). The question of finding all positive integers \(n\) such that a given non-Abelian finite simple group \(G\) is \(nX\)-complementary generated was posed. Here we answer this question for the Harada-Norton group \(HN\).
Reviewer: Reviewer (Berlin)

MSC:
20D08 Simple groups: sporadic groups
20F05 Generators, relations, and presentations of groups
Software:
GAP
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] M. Aschbacher: Sporadic group. Cambridge University Press, U.K., 1997.
[2] A. R. Ashrafi: Generating Pairs for the Thompson Group Th. to be submitted.
[3] A. R. Ashrafi: Generating Pairs for the Held Group He. to appear in J. Appl. Math. & Computing, 2002. · Zbl 1010.20008
[4] A. R. Ashrafi, A. Iranmanesh: nX-Complementary Generations of the Rudvalis Group Ru. to be submitted. · Zbl 1084.20009
[5] M. D. E. Conder: Sorne results on quotients of triangle groups. Bull. Austral. Math. Soc. 30 (1984), 73-90. · Zbl 0546.20027 · doi:10.1017/S0004972700001738
[6] M. D. E. Conder R. A. Wilson, A. J. Woider: The symmetric genus of sporadìc groups. Proc. Amer. Math. Soc. 116 (1992), 653-663. · Zbl 0836.20014 · doi:10.1090/S0002-9939-1992-1126192-2
[7] J. H. Conway R. T. Curtis S. P. Norton R. A. Parker, R. A. Wilson: Atlas of Finite Groups. Oxford Univ. Press (Clarendon), Oxford, 1985. · Zbl 0568.20001
[8] M. R. Darafsheh, A. R. Ashrafi: \((2,p,g)\)-Generation of the Conway group \(Co_1\). Kumamoto J. Math., 13 (2000), 1-20. · Zbl 0949.20012
[9] M. R. Darafsheh, A. R. Ashrafi: Generatin Pairs for the Sporadic Group Ru. to be submitted. · Zbl 1063.20013
[10] M. R. Darafsheh A. R. Ashrafi, G. A. Moghani: \((p, q, r)\)-Generations of the Conway group \(Co_1\), for odd p. Kumamoto J. Math., 14 (2001), 1-20. · Zbl 0980.20007
[11] M. R. Darafsheh A. R. Ashrafi, G. A. Moghani: (p, 9,r)-Generations and nX-Complementary Generations of the Sporadic Group Ly. to appear in Kumamoto J. Math., 2002. · Zbl 1046.20018
[12] M. R. Darafsheh A. R. Ashrafi, G. A. Moghani: (p, q, r)-Generations of the Sporadic group O’ N. to appear in LMS lecture note serries. · Zbl 1047.20012
[13] M. R. Darafsheh G. A. Moghani, A. R. Ashrafi: nX-Complementary Generations of the Conway Group \(Co_1\). to be submitted. · Zbl 1138.20015
[14] M. R. Darafsheh A. R. Ashrafi, G. A. Moghani: (p, q, r)-Generations of the Sporadic Group O’N. to appear in Southeat Asian Bull, of Math., 2003. · Zbl 1047.20012
[15] M. R. Darafsheh, G. A. Moghani: nX-complementary Generations of the Sporadic Group He. To appear in Italian J. Pure and Appl. Math. · Zbl 1138.20015
[16] S. Ganief, J. Moori: \((p, g,r)\)-Generations of the smallest Conway group \(Co_3\). J. Algebra 188 (1997), 516-530. · Zbl 0874.20016 · doi:10.1006/jabr.1996.6828
[17] S. Ganief, J. Moori: Generating pairs for the Conway groups \(Co_2\) and \(Co_3\). J. Group Theory 1 (1998), 237-256. · Zbl 0906.20020 · doi:10.1515/jgth.1998.016
[18] S. Ganief, J. Moori: 2-Generations of the Forth Janko Group \(J_4\). J. Algebra 212 (1999), 305-322. · Zbl 0918.20022 · doi:10.1006/jabr.1998.7578
[19] S. Ganief, J. Moori: (p, q, r)-Generations and nX-complementary generations of the sporadic groups HS and McL. J. Algebra 188 (1997), 531-546. · Zbl 0874.20017 · doi:10.1006/jabr.1996.6829
[20] J. Moori: \((p, q, r)\)-Generations for the Janko groups \(J_ 1\) and \(J_ 2\). Nova J. Algebra and Geometry, Vol. 2, No. 3 (1993), 277-285. · Zbl 0868.20016 · arxiv:math/9306201
[21] J. Moori: (2, 3,p)-Generations for the Fischer group \(F_{22}\). Comm. Algebra 2(11) (1994), 4597-4610. · Zbl 0806.20018 · doi:10.1080/00927879408825089
[22] M. Schonert, al.: GAP, Groups, Algorithms and Programming. Lehrstuhl De für Mathematik, RWTH, Aachen, 1992.
[23] A. J. Woldar: Representing \(M_{11}\), \(M_{12}\), \(M_{22}\) and \(M_{23}\) on surfaces of least genus. Comm. Algebra 18 (1990), 15-86. · Zbl 0701.20013
[24] A. J. Woldar: Sporadic simple groups which are Hurwitz. J. Algebra 144(1991), 443-450. · Zbl 0736.20012 · doi:10.1016/0021-8693(91)90115-O
[25] A. J. Woldar: 3/2-Generation of the Sporadic, simple groups. Comm. Algebra 22 (2) (1994), 675-685. · Zbl 0806.20020 · doi:10.1080/00927879408824867
[26] A. J. Woldar: On Hurwitz generation and genus actions of sporadic groups. Illinois Math. J. (3) 33 (1989), 416-437. · Zbl 0654.20014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.