zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Periodic solutions of a nonautonomous predator--prey system with stage structure and time delays. (English) Zbl 1110.34051
Abstract: “A nonautonomous Lotka-Volterra-type predator-prey model with stage structure and time delays is investigated. It is assumed in the model that the individuals in each species may belong to one of two classes: the immatures and the matures, the age to maturity is presented by a time delay, and that the immature predators do not feed on prey and do not have the ability to produce. By some comparison arguments, we first discuss the permanence of the model. By using the continuation theorem of coincidence degree theory, sufficient conditions are derived for the existence of positive periodic solutions to the model. By means of a suitable Lyapunov functional, sufficient conditions are obtained for the uniqueness and global stability of the positive periodic solutions to the model.”

MSC:
34K13Periodic solutions of functional differential equations
34K60Qualitative investigation and simulation of models
92D25Population dynamics (general)
WorldCat.org
Full Text: DOI
References:
[1] Aiello, W. G.; Freedman, H. I.: A time delay model of single-species growth with stage structure. Math. biosci. 101, 139-153 (1990) · Zbl 0719.92017
[2] Aiello, W. G.; Freedman, H. I.; Wu, J.: Analysis of a model representing stage-structured population growth with state-dependent time delay. SIAM J. Appl. math. 52, 855-869 (1992) · Zbl 0760.92018
[3] Bence, J. R.; Nisbet, R. M.: Space-limited recruitment in open system: the importance of time delays. Ecology 70, 1434-1441 (1989)
[4] Cushing, J. M.: Periodic time-dependent predator -- prey system. SIAM J. Appl. math. 32, 82-95 (1977) · Zbl 0348.34031
[5] Freedman, H. I.; Wu, J.: Persistence and global asymptotic stability of single species dispersal models with stage structure. Quart. appl. Math. 49, 351-371 (1991) · Zbl 0732.92021
[6] Gaines, R. E.; Mawhin, J. L.: Coincidence degree and nonlinear differential equations. (1977) · Zbl 0339.47031
[7] Gopalsamy, K.: Stability and oscillations in delay differential equations of population dynamics. (1992) · Zbl 0752.34039
[8] Gourley, S. A.; Kuang, Y.: A stage structured predator -- prey model and its dependence on maturation delay and death rate. J. math. Biol. 49, 188-200 (2004) · Zbl 1055.92043
[9] Kuang, Y.; So, J. W. H.: Analysis of a delayed two-stage population with space-limited recruitment. SIAM J. Appl. math. 55, 1675-1695 (1995) · Zbl 0847.34076
[10] Liu, S.; Chen, L.; Agarwal, R.: Recent progress on stage-structured population dynamics. Math. comput. Modelling 36, 1319-1360 (2002) · Zbl 1077.92516
[11] Liu, S.; Chen, L.; Liu, Z.: Extinction and permanence in nonautonomous competitive system with stage structure. J. math. Anal. appl. 274, 667-684 (2002) · Zbl 1039.34068
[12] Liu, S.; Chen, L.; Luo, G.: Extinction and permanence in competitive stage structured system with time delays. Nonlinear anal. TMA 51, 1347-1361 (2002) · Zbl 1021.34065
[13] Liu, S.; Chen, L.; Luo, G.; Jiang, Y.: Asymptotic behaviors of competitive Lotka -- Volterra system with stage structure. J. math. Anal. appl. 271, 124-138 (2002) · Zbl 1022.34039
[14] Magnusson, K. G.: Destabilizing effect of cannibalism on a structured predator -- prey system. Math. biosci. 155, 61-75 (1999) · Zbl 0943.92030
[15] Song, X.; Cai, L.; Neumann, Avidan U.: Ratio-dependent predator -- prey system with stage structure for prey. Discrete contin. Dyn. syst. Ser. B 4, 747-758 (2004) · Zbl 1114.92056
[16] Song, X.; Chen, L.: Optimal harvesting and stability for a two-species competitive system with stage structure. Math. biosci. 170, 173-186 (2001) · Zbl 1028.34049
[17] Song, X.; Chen, L.: Modelling and analysis of a single species system with stage structure and harvesting. Math. comput. Modelling 36, 67-82 (2002) · Zbl 1024.92015
[18] Wang, W.; Chen, L.: A predator -- prey system with stage structure for predator. Comput. math. Appl. 33, 83-91 (1997)
[19] Wang, W.; Mulone, G.; Salemi, F.; Salone, V.: Permanence and stability of a stage-structured predator -- prey model. J. math. Anal. appl. 262, 499-528 (2001) · Zbl 0997.34069
[20] Xu, R.; Chaplain, M. A. J.; Davidson, F. A.: Global stability of a Lotka -- Volterra type predator -- prey model with stage structure and time delay. Appl. math. Comput. 159, 863-880 (2004) · Zbl 1056.92063
[21] Zhang, X.; Chen, L.; Neumann, Avidan U.: The stage-structured predator -- prey model and optimal harvesting policy. Math. biosci. 168, 201-210 (2000) · Zbl 0961.92037