×

Existence and uniqueness results for neutral SDEs in Hilbert spaces. (English) Zbl 1110.60063

Let \(A(t)\) be a generator of a strongly continuous semigroup of bounded linear operators in a Hilbert space \(H\). The author considers a stochastic differential equation (SDE) of the form \[ d[X(t)+g(t,X(t))]=[AX(t)+f(t,X(t))] dt+\sigma(t,X(t))dW(t), \quad X(0)=x_0\in H,\tag{1} \] with non-Lipshitz coefficients \(f,\sigma\) satisfying the estimate of the form \[ E\| f(t,X)-f(t,Y)\| ^p\leq G(t,E\| X-Y\| ^p) \] for \(X,Y\in L^p(\Omega, H)\), \(p>2\), and a scalar function \(G\) possessing some additional properties. By a Picard type approximation the existence and uniqueness of a mild solution to (1) under some additional conditions on \(g, A,f \) and \(\sigma\) is proved.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
34F05 Ordinary differential equations and systems with randomness
34G20 Nonlinear differential equations in abstract spaces
35R60 PDEs with randomness, stochastic partial differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1081/SAP-200044463 · Zbl 1081.34083
[2] DOI: 10.1023/A:1021723421437 · Zbl 1001.60068
[3] DOI: 10.1017/CBO9780511666223
[4] Yamada T., J. Math. Kyoto Univ. 21 pp 501– (1981)
[5] Govindan T.E., Dynam. Sys. Appl. 3 pp 51– (1994)
[6] DOI: 10.1081/SAP-120022863 · Zbl 1036.60052
[7] DOI: 10.1081/SAP-120004113 · Zbl 1002.60058
[8] Kolmanovskii V.B., Stability and Periodic Modes of Control Systems with Aftereffect (1981)
[9] DOI: 10.1081/SAP-120022865 · Zbl 1025.60028
[10] DOI: 10.1016/S0167-6911(99)00021-3 · Zbl 0948.93060
[11] DOI: 10.1137/S0363012901391688 · Zbl 1084.93006
[12] DOI: 10.1016/S0022-247X(03)00592-4 · Zbl 1109.93305
[13] Mao X., Stochastic Differential Equations and Their Applications (1997) · Zbl 0892.60057
[14] Mao X., Funct. Differ. Equ. 5 pp 195– (1998)
[15] Liao X.X., Dynam. Contin. Discrete Impuls. Systems 6 pp 569– (1999)
[16] Mao X., Stochastics Rep. 68 pp 273– (2000) · Zbl 0964.60066
[17] DOI: 10.1137/S0036141095290835 · Zbl 0876.60047
[18] DOI: 10.1155/S1048953304309020 · Zbl 1077.34062
[19] Rodkina A.E., Stochastics Monographs 12 pp 187– (1984)
[20] DOI: 10.1016/0022-0396(92)90148-G · Zbl 0744.34052
[21] DOI: 10.1016/0022-247X(84)90026-X · Zbl 0598.60064
[22] Zangeneh B.Z., Stochastics and Stochastic Reports 53 pp 129– (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.