Restarted block Lanczos bidiagonalization methods. (English) Zbl 1110.65027

Summary: The problem of computing a few of the largest or smallest singular values and associated singular vectors of a large matrix arises in many applications. This paper describes restarted block Lanczos bidiagonalization methods based on augmentation of Ritz vectors or harmonic Ritz vectors by block Krylov subspaces.


65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65F20 Numerical solutions to overdetermined systems, pseudoinverses


Sparsity; TRLan; na26
Full Text: DOI


[1] Baglama, J., Calvetti, D., Reichel, L.: IRBL: An implicitly restarted block Lanczos method for large-scale Hermitian eigenproblems. SIAM J. Sci. Comput. 24, 1650–1677 (2003) · Zbl 1044.65027
[2] Baglama, J., Reichel, L.: Augmented implicitly restarted Lanczos bidiagonalization methods. SIAM J. Sci. Comput. 27, 19–42 (2005) · Zbl 1087.65039
[3] Berry, M.W., Dumais, S.T., O’Brien, G.W.: Using linear algebra for intelligent information retrieval. SIAM Rev. 37, 573–595 (1995) · Zbl 0842.68026
[4] Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia, PA (1996) · Zbl 0847.65023
[5] Björck, Å., Grimme, E., Van Dooren, P.: An implicit shift bidiagonalization algorithm for ill-posed systems. BIT 34, 510–534 (1994) · Zbl 0821.65023
[6] Golub, G.H., Luk, F.T., Overton, M.L.: A block Lanczos method for computing the singular values and corresponding vectors of a matrix. ACM Trans. Math. Softw. 7, 149–169 (1981) · Zbl 0466.65022
[7] Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd ed. Johns Hopkins University Press, Baltimore, MD (1996) · Zbl 0865.65009
[8] Hochstenbach, M.E.: A Jacobi–Davidson type SVD method. SIAM J. Sci. Comput. 23, 606–628 (2001) · Zbl 1002.65048
[9] Hochstenbach, M.E.: Harmonic and refined extraction methods for the singular value problem, with applications in least-squares problems. BIT 44, 721–754 (2004) · Zbl 1079.65047
[10] Jia, Z., Niu, D.: An implicitly restarted refined bidiagonalization Lanczos method for computing a partial singular value decomposition. SIAM J. Matrix Anal. Appl. 25, 246–265 (2003) · Zbl 1063.65030
[11] Kokiopoulou, E., Bekas, C., Gallopoulos, E.: Computing smallest singular triplets with implicitly restarted Lanczos bidiagonalization. Appl. Numer. Math. 49, 39–61 (2004) · Zbl 1049.65027
[12] Lehoucq, R.B.: Implicitly restarted Arnoldi methods and subspace iteration. SIAM J. Matrix Anal. Appl. 23, 551–562 (2001) · Zbl 1004.65044
[13] Luk, F.T., Qiao, S.: Rank-revealing decomposition of symmetric Toeplitz matrices. In: Luk, F.T. (ed.) Proc. of SPIE. Advanced Signal Processing Algorithms, vol. 2563, pp. 293–301 (1995)
[14] Morgan, R.B.: Computing interior eigenvalues of large matrices. Linear Algebra Appl. 154–156, 289–309 (1991) · Zbl 0734.65029
[15] Morgan, R.B.: Restarted block GMRES with deflation of eigenvalues. Appl. Numer. Math. 54, 222–236 (2005) · Zbl 1074.65043
[16] Nagy, J.G.: Fast algorithms for the regularization of banded Toeplitz least squares problems. In: Luk, F.T. (ed.) Proc. of SPIE. Advanced Signal Processing Algorithms, Architecture, and Implementations. IV, vol. 2295, pp. 566–575 (1994)
[17] Paige, C.C., Parlett, B.N., van der Vorst, H.A.: Approximate solutions and eigenvalue bounds from Krylov subspaces. Numer. Linear Algebra Appl. 2, 115–134 (1995) · Zbl 0831.65036
[18] Parlett, B.: Misconvergence in the Lanczos algorithm. In: Cox, M.G., Hammarling, S. (eds.) Reliable Numerical Computation, pp. 7–24. Clarendon, Oxford (1990) · Zbl 0726.65032
[19] Simon, H.D., Zha, H.: Low rank matrix approximation using the Lanczos bidiagonalization process with applications. SIAM J. Sci. Comput. 21, 2257–2274 (2000) · Zbl 0962.65038
[20] Sorensen, D.C.: Numerical methods for large eigenvalue problems. Acta Numer. 11, 519–584 (2002) · Zbl 1105.65325
[21] Vudoc, R., Im, E.-J., Yellick, K.A.: SPARSITY: Optimization framework for sparse matrix kernels. Int. J. High Perform. Comput. Appl. 18, 135–158 (2004)
[22] Wijshoff, H.A.G.: Implementing sparse BLAS primitives on concurrent/vector processors: a case study. In: Gibbons, A., Spirakis, P.(eds.) Lectures in Parallel Computation, pp. 405–437. Cambridge University Press, Cambridge, UK (1993)
[23] Wu, K., Simon, H.: Thick-restarted Lanczos method for large symmetric eigenvalue problems. SIAM J. Matrix Anal. Appl. 22, 602–616 (2000) · Zbl 0969.65030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.