[1] |
Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. Journal of computational physics 144, 45-58 (1994) · Zbl 0822.65062 |

[2] |
Atkins, H.; Shu, C. W.: Quadrature-free implementation of the discontinuous Galerkin method for hyperbolic equations. AIAA journal 36, 775-782 (1998) |

[3] |
Balsara, D.; Shu, C. W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. Journal of computational physics 160, 405-452 (2000) · Zbl 0961.65078 |

[4] |
T.J. Barth, P.O. Frederickson, Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction. AIAA paper no. 90-0013, 28th Aerospace Sciences Meeting January 1990. |

[5] |
Ben-Artzi, M.; Falcovitz, J.: A second-order Godunov-type scheme for compressible fluid dynamics. Journal of computational physics 55, 1-32 (1984) · Zbl 0535.76070 |

[6] |
Butcher, J. C.: The numerical analysis of ordinary differential equations: Runge -- Kutta and general linear methods. (1987) · Zbl 0616.65072 |

[7] |
Casper, J.; Atkins, H. L.: A finite-volume high-order ENO scheme for two-dimensional hyperbolic systems. Journal of computational physics 106, 62-76 (1993) · Zbl 0774.65066 |

[8] |
Cockburn, B.; Karniadakis, G. E.; Shu, C. W.: Discontinuous Galerkin methods. Lecture notes in computational science and engineering (2000) |

[9] |
Davies-Jones, R.: Comments on ’a kinematic analysis of frontogenesis associated with a non-divergent vortex’. Journal of atmospheric sciences 42, 2073-2075 (1985) |

[10] |
Dubiner, M.: Spectral methods on triangles and other domains. Journal of scientific computing 6, 345-390 (1991) · Zbl 0742.76059 |

[11] |
Dumbser, M.: Arbitrary high order schemes for the solution of hyperbolic conservation laws in complex domains. (2005) |

[12] |
M. Dumbser, M. Käser, An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes II: The three-dimensional isotropic case, Geophysical Journal International, in press. |

[13] |
Dumbser, M.; Munz, C. D.: ADER discontinuous Galerkin schemes for aeroacoustics. Comptes rendus mécanique 333, 683-687 (2005) · Zbl 1107.76044 |

[14] |
Dumbser, M.; Munz, C. D.: Arbitrary high order discontinuous Galerkin schemes. IRMA series in mathematics and theoretical physics, 295-333 (2005) · Zbl 1210.65165 |

[15] |
Dumbser, M.; Munz, C. D.: Building blocks for arbitrary high order discontinuous Galerkin schemes. Journal of scientific computing 27, 215-230 (2006) · Zbl 1115.65100 |

[16] |
Dumbser, M.; Schwartzkopff, T.; Munz, C. D.: Arbitrary high order finite volume schemes for linear wave propagation. Notes on numerical fluid mechanics and multidisciplinary design (NNFM), 129-144 (2006) |

[17] |
Friedrich, O.: Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. Journal of computational physics 144, 194-212 (1998) |

[18] |
Godunov, S. K.: Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics. Mathematics of the USSR-sbornik 47, 271-306 (1959) |

[19] |
Harten, A.: High resolution schemes for hyperbolic conservation laws. Journal of computational physics 49, 357-393 (1983) · Zbl 0565.65050 |

[20] |
Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S. R.: Uniformly high order accurate essentially non-oscillatory schemes III. Journal of computational physics 71, 231-303 (1987) · Zbl 0652.65067 |

[21] |
Hempel, D.: Local mesh adaption in two space dimensions. IMPACT computational science & engineering 5, 309-317 (1993) · Zbl 0795.65082 |

[22] |
D. Hempel, Isotropic refinement and recoarsening in 2 dimensions, Technical Report DLR IB 223-95 A 35, Deutsches Zentrum fnr Luft- und Raumfahrt (DLR), 1995. |

[23] |
Hu, C.; Shu, C. W.: Weighted essentially non-oscillatory schemes on triangular meshes. Journal of computational physics 150, 97-127 (1999) · Zbl 0926.65090 |

[24] |
Iii, C. A. Doswell: A kinematic analysis of frontogenesis associated with a non-divergent vortex. Journal of atmospheric sciences 41, 1242-1248 (1984) |

[25] |
Jiang, G. -S.; Shu, C. W.: Efficient implementation of weighted ENO schemes. Journal of computational physics, 202-228 (1996) · Zbl 0877.65065 |

[26] |
Käser, M.; Dumbser, M.: An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes I: The two-dimensional isotropic case with external source terms. Geophysical journal international 166, 855-877 (2006) |

[27] |
Käser, M.; Iske, A.: ADER schemes on adaptive triangular meshes for scalar conservation laws. Journal of computational physics 205, 486-508 (2005) · Zbl 1072.65116 |

[28] |
Meister, A.; Struckmeier, J.: Hyperbolic partial differential equations. (2002) · Zbl 1012.65086 |

[29] |
Munz, C. D.: On the numerical dissipation of high resolution schemes for hyperbolic conservation laws. Journal of computational physics 77, 18-39 (1988) · Zbl 0646.65073 |

[30] |
Ollivier-Gooch, C.; Van Altena, M.: A high-order-accurate unstructured mesh finite-volume scheme for the advection -- diffusion equation. Journal of computational physics 181, 729-752 (2002) · Zbl 1178.76251 |

[31] |
Qiu, J.; Shu, C. W.: Hermite WENO schemes and their application as limiters for Runge -- Kutta discontinuous Galerkin method: one-dimensional case. Journal of computational physics 193, 115-135 (2003) · Zbl 1039.65068 |

[32] |
Qiu, J.; Shu, C. W.: Hermite WENO schemes and their application as limiters for Runge -- Kutta discontinuous Galerkin method II: Two dimensional case. Computers and fluids 34, 642-663 (2005) · Zbl 1134.65358 |

[33] |
Qiu, J.; Shu, C. W.: Runge -- Kutta discontinuous Galerkin method using WENO limiters. SIAM journal on scientific computing 26, 907-929 (2005) · Zbl 1077.65109 |

[34] |
Schwartzkopff, T.; Dumbser, M.; Munz, C. D.: Fast high order ADER schemes for linear hyperbolic equations. Journal of computational physics 197, 532-539 (2004) · Zbl 1052.65078 |

[35] |
Schwartzkopff, T.; Munz, C. D.; Toro, E. F.: ADER: a high order approach for linear hyperbolic systems in 2d. Journal of scientific computing 17, No. 1 -- 4, 231-240 (2002) · Zbl 1022.76034 |

[36] |
Shi, J.; Hu, C.; Shu, C. W.: A technique of treating negative weights in WENO schemes. Journal of computational physics 175, 108-127 (2002) · Zbl 0992.65094 |

[37] |
Sonar, T.: On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations: polynomial recovery, accuracy and stencil selection. Computer methods in applied mechanics and engineering 140, 157-181 (1997) · Zbl 0898.76086 |

[38] |
Stroud, A. H.: Approximate calculation of multiple integrals. (1971) · Zbl 0379.65013 |

[39] |
Sweby, P. K.: High resolution TVD schemes using flux limiters. Lecture notes in applied mathematics 22, 289-309 (1985) · Zbl 0586.76119 |

[40] |
Titarev, V. A.; Toro, E. F.: ADER: arbitrary high order Godunov approach. Journal of scientific computing 17, No. 1 -- 4, 609-618 (2002) · Zbl 1024.76028 |

[41] |
Titarev, V. A.; Toro, E. F.: ADER schemes for three-dimensional nonlinear hyperbolic systems. Journal of computational physics 204, 715-736 (2005) · Zbl 1060.65641 |

[42] |
Toro, E. F.; Millington, R. C.; Nejad, L. A. M.: Towards very high order Godunov schemes. Godunov methods. Theory and applications, 905-938 (2001) · Zbl 0989.65094 |

[43] |
Toro, E. F.; Titarev, V.: TVD fluxes of the high-order ADER schemes. Journal of scientific computing 24, 285-309 (2005) · Zbl 1096.76029 |

[44] |
Toro, E. F.; Titarev, V. A.: Solution of the generalized Riemann problem for advection-reaction equations. Proceedings of royal society of London, 271-281 (2002) · Zbl 1019.35061 |

[45] |
Toro, E. F.; Titarev, V. A.: ADER schemes for scalar hyperbolic conservation laws with source terms in three space dimensions. Journal of computational physics 202, 196-215 (2005) · Zbl 1061.65103 |

[46] |
Van Leer, B.: Towards the ultimate conservative difference scheme II: Monotonicity and conservation combined in a second order scheme. Journal of computational physics 14, 361-370 (1974) · Zbl 0276.65055 |

[47] |
Van Leer, B.: Towards the ultimate conservative difference scheme V: a second order sequel to Godunov’s method. Journal of computational physics 32, 101-136 (1979) |

[48] |
Zalesak, S. T.: Fully multidimensional flux-corrected transport algorithms for fluids. Journal of computational physics 31, 335-362 (1979) · Zbl 0416.76002 |