zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A spectral collocation method based on integrated Chebyshev polynomials for two-dimensional biharmonic boundary-value problems. (English) Zbl 1110.65112
Summary: This paper reports a new spectral collocation method for numerically solving two-dimensional biharmonic boundary-value problems. The construction of the Chebyshev approximations is based on integration rather than conventional differentiation. This use of integration allows: (i) the imposition of the governing equation at the whole set of grid points including the boundary points and (ii) the straightforward implementation of multiple boundary conditions. The performance of the proposed method is investigated by considering several biharmonic problems of first and second kinds; more accurate results and higher convergence rates are achieved than with conventional differential methods.

MSC:
65N35Spectral, collocation and related methods (BVP of PDE)
35J40Higher order elliptic equations, boundary value problems
65N12Stability and convergence of numerical methods (BVP of PDE)
WorldCat.org
Full Text: DOI
References:
[1] Baltensperger, R.; Trummer, M. R.: Spectral differencing with a twist. SIAM J. Scientific comput. 24, 1465-1487 (2003) · Zbl 1034.65016
[2] Bayliss, A.; Class, A.; Matkowsky, B. J.: Roundoff error in computing derivatives using the Chebyshev differentiation matrix. J. comput. Phys. 116, 380-383 (1995) · Zbl 0826.65014
[3] Bernardi, C.; Coppoletta, G.; Maday, Y.: Some spectral approximations of two-dimensional fourth-order problems. Math. comput. 59, 63-76 (1992) · Zbl 0754.65088
[4] Bernardi, C.; Maday, Y.: Spectral methods. Handbook of numerical analysis 5, 209-485 (1997)
[5] Boyd, J. P.: Chebyshev and Fourier spectral methods. (2001) · Zbl 0994.65128
[6] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A.: Spectral methods in fluid dynamics. (1988) · Zbl 0658.76001
[7] Fornberg, B.: Generation of finite difference formulas on arbitrarily spaced grids. Math. comput. 51, 699-706 (1988) · Zbl 0701.65014
[8] Fornberg, B.: A practical guide to pseudospectral methods. (1998) · Zbl 0912.65091
[9] Gottlieb, D.; Orszag, S. A.: Numerical analysis of spectral methods: theory and applications. (1977) · Zbl 0412.65058
[10] Heinrichs, W.: A spectral multigrid method for the Stokes problem in streamfunction formulation. J. comput. Phys. 102, 310-318 (1992) · Zbl 0759.76059
[11] Rosales, A. Hernandez; La Rocca, A.; Power, H.: Radial basis function Hermite collocation approach for the numerical simulation of the effect of precipitation inhibitor on the crystallization process of an over-saturated solution. Numer. methods partial differential equations 22, 361-380 (2006) · Zbl 1093.82019
[12] Huang, W.; Sloan, D. M.: The pseudospectral method for solving differential eigenvalue problems. J. comput. Phys. 111, 399-409 (1994) · Zbl 0799.65091
[13] Kansa, E. J.; Power, H.; Fasshauer, G. E.; Ling, L.: A volumetric integral radial basis function method for time-dependent partial differential equations: I. Formulation. Eng. anal. Boundary elements 28, 1191-1206 (2004) · Zbl 1159.76363
[14] Karageorghis, A.: A note on the satisfaction of the boundary conditions for Chebyshev collocation methods in rectangular domains. J. scientific comput. 6, 21-26 (1991) · Zbl 0751.65063
[15] Karageorghis, A.: Satisfaction of boundary conditions for Chebyshev collocation methods in cuboidal domains. Comput. math. Appl. 27, 85-90 (1994) · Zbl 0802.65114
[16] Ling, L.; Trummer, M. R.: Multiquadric collocation method with integral formulation for boundary layer problems. Comput. math. Appl. 48, No. 5 -- 6, 927-941 (2004) · Zbl 1066.65080
[17] Madych, W. R.; Nelson, S. A.: Multivariate interpolation and conditionally positive definite functions, II. Math. comput. 54, No. 189, 211-230 (1990) · Zbl 0859.41004
[18] Mai-Duy, N.: Solving high order ordinary differential equations with radial basis function networks. Int. J. Numer. methods eng. 62, 824-852 (2005) · Zbl 1077.74057
[19] N. Mai-Duy, An effective spectral collocation method for the direct solution of high-order ODEs, Comm. Numer. Methods Eng., in press. · Zbl 1105.65342
[20] Mai-Duy, N.; Tanner, R. I.: Solving high order partial differential equations with radial basis function networks. Int. J. Numer. methods eng. 63, 1636-1654 (2005) · Zbl 1145.76037
[21] Mason, J. C.; Handscomb, D. C.: Chebyshev polynomials. (2003) · Zbl 1015.33001
[22] J.C. Mason, T.N. Phillips (Guest Editors), Numerical Algorithms, vol. 38, Number 1, Chebyshev Polynomials and Spectral Methods, 2005.
[23] Peyret, R.: Spectral methods for incompressible viscous flow. (2002) · Zbl 1005.76001
[24] Phillips, T. N.; Karageorghis, A.: On the coefficients of integrated expansions of ultraspherical polynomials. SIAM J. Numer. anal. 27, No. 3, 823-830 (1990) · Zbl 0701.33007
[25] Timoshenko, S.; Woinowsky-Krieger, S.: Theory of plates and shells. (1959) · Zbl 0114.40801
[26] Trefethen, L. N.: Spectral methods in Matlab. (2000) · Zbl 0953.68643
[27] Weideman, J. A. C.; Reddy, S. C.: A Matlab differentiation matrix suite. ACM trans. Math. software 26, 465-519 (2000)
[28] Welfert, B. D.: Generation of pseudospectral differentiation matrices I. SIAM J. Numer. anal. 34, 1640-1657 (1997) · Zbl 0889.65013