×

Kloosterman identities over a quadratic extension. II. (English) Zbl 1111.11028

This work concerns the relative trace formula, an approach to study the quadratic base change from automorphic representations of \(\text{ GL} (n,F_{\mathbb{A}})\) to automorphic representations of \(\text{ GL} (n,E_{\mathbb{A}})\), where \(E/F\) is a quadratic extension of number fields. The main result is local, it deals with a quadratic unramified extension of a non-Archimedean local field of odd residual characteristic and characteristic 0. The author proves certain identities between Kloosterman integrals. They constitute the fundamental lemma of the relative trace formula for Hecke functions. This result for the unit element of the Hecke algebra was proved in the first part [H. Jacquet, Ann. Math. (2) 160, No.2, 755–779 (2004; Zbl 1071.11026)].
The author also discusses global applications, in particular, the following result. A cuspidal automorphic representation of \(\text{ GL} (n,E_{\mathbb{A}})\) is distinguished by some unitary group if and only if it is the base change of an automorphic cuspidal representation of \(\text{ GL} (n,F_{\mathbb{A}})\).

MSC:

11F70 Representation-theoretic methods; automorphic representations over local and global fields
11L05 Gauss and Kloosterman sums; generalizations

Citations:

Zbl 1071.11026

References:

[1] Arthur J. , Clozel L. , Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula , Ann. of Math. Stud. , vol. 120 , Princeton University Press , Princeton, NJ , 1989 . MR 1007299 | Zbl 0682.10022 · Zbl 0682.10022
[2] Casselman W. , Shalika J. , The unramified principal series of p -adic groups. II. The Whittaker function , Compositio Math. 41 ( 1980 ) 207 - 231 . Numdam | MR 581582 | Zbl 0472.22005 · Zbl 0472.22005
[3] Flicker Y. , On distinguished representations , J. reine angew. Math. 418 ( 1991 ) 139 - 172 . MR 1111204 | Zbl 0725.11026 · Zbl 0725.11026 · doi:10.1515/crll.1991.418.139
[4] Goodman R. , Wallach N. , Representations and Invariants of the Classical Groups , Encyclopedia of Mathematics and its Applications , Cambridge University Press , Cambridge , 1998 . MR 1606831 | Zbl 0948.22001 · Zbl 0948.22001
[5] Harder G. , Langlands R. , Rapoport M. , Algebraische Zyklen auf Hilbert-Blumenthal-Flächen , J. reine angew. Math. 366 ( 1986 ) 53 - 120 . MR 833013 | Zbl 0575.14004 · Zbl 0575.14004
[6] Jacquet H. , Kloosterman Identities over a quadratic extension, Ann. of Math. , submitted for publication. Zbl 1071.11026 · Zbl 1071.11026 · doi:10.4007/annals.2004.160.756
[7] Jacquet H. , Rallis S. , Kloosterman integrals for skew symmetric matrices , Pacific J. Math. 154 ( 2 ) ( 1992 ) 265 - 283 . Article | MR 1159511 | Zbl 0778.11032 · Zbl 0778.11032 · doi:10.2140/pjm.1992.154.265
[8] Jacquet H. , Ye Y. , Une remarque sur le changement de base quadratique , C. R. Acad. Sci. Paris Sér. I Math. 311 ( 1990 ) 671 - 676 . MR 1081622 | Zbl 0715.11026 · Zbl 0715.11026
[9] Kottwitz R. , Base change for unit elements of Hecke algebras , Compositio Math. 60 ( 1986 ) 237 - 250 . Numdam | MR 868140
[10] Lapid E. , On the fine spectral expansion of Jacquet’s relative trace formula, Preprint. · Zbl 1195.11071 · doi:10.1017/S1474748005000289
[11] Lapid E. , Rogawski J. , Periods of Eisenstein series: the Galois case , Duke Math. J. 120 ( 2003 ) 153 - 226 . Article | MR 2010737 | Zbl 1037.11033 · Zbl 1037.11033 · doi:10.1215/S0012-7094-03-12016-5
[12] Lapid E. , Rogawski J. , Stabilization of periods of integrals of Eisenstein series and Bessel distributions on \(\mathrm{GL}\left(3\right)\) relative to \(U\left(3\right)\) , Doc. Math. 5 ( 2000 ) 317 - 350 . MR 1767567 | Zbl 0983.11022 · Zbl 0983.11022
[13] Macdonald I.G. , Symmetric Functions and Orthogonal Polynomials , Amer. Math. Soc. Univ. Lecture Ser. , vol. 12 , 1991 . MR 1488699 | Zbl 0887.05053 · Zbl 0887.05053
[14] Mao Z. , Rallis S. , Howe duality and the trace formula , Pacific J. Math. 191 ( 2 ) ( 1999 ) 329 - 346 . MR 1738188 | Zbl 1008.22008 · Zbl 1008.22008 · doi:10.2140/pjm.1999.191.329
[15] Ngô B.C. , Le lemme fondamental de Jacquet et Ye en caractéristique positive , Duke Math. J. 96 ( 1999 ) 473 - 520 . Article | MR 1671212 | Zbl 1047.11517 · Zbl 1047.11517 · doi:10.1215/S0012-7094-99-09615-1
[16] Shalika J. , The multiplicity one theorem for \({\mathrm{GL}}_{n}\) , Ann. of Math. 100 ( 2 ) ( 1974 ) 171 - 193 . MR 348047 | Zbl 0316.12010 · Zbl 0316.12010 · doi:10.2307/1971071
[17] Shintani T. , On an explicit formula for class-1 Whittaker functions on \({\mathrm{GL}}_{n}\) over P -adic fields , Proc. Japan Acad. 52 ( 1976 ) 180 - 182 . Article | MR 407208 | Zbl 0387.43002 · Zbl 0387.43002 · doi:10.3792/pja/1195518347
[18] Ye Y. , Kloosterman integrals and base change for \(gl\left(2\right)\) , J. reine angew. Math. 400 ( 1989 ) 57 - 121 . Article | MR 1013725 | Zbl 0665.10020 · Zbl 0665.10020 · doi:10.1515/crll.1989.400.57
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.