Salmasian, Hadi A notion of rank for unitary representations of reductive groups based on Kirillov’s orbit method. (English) Zbl 1111.22013 Duke Math. J. 136, No. 1, 1-49 (2007). The rank of irreducible unitary representations of semisimple groups was first introduced by R. Howe to characterize the ‘size’ of the infinite-dimensional representations. In this paper, the author introduces a new notion of rank for irreducible unitary representations of semisimple groups which is based on Kirillov’s method of coadjoint orbits for nilpotent groups. Reviewer: Benjamin Cahen (Metz) Cited in 3 ReviewsCited in 4 Documents MSC: 22E46 Semisimple Lie groups and their representations 22E50 Representations of Lie and linear algebraic groups over local fields 11F27 Theta series; Weil representation; theta correspondences Keywords:rank; unitary representations; reductive groups; orbit method PDF BibTeX XML Cite \textit{H. Salmasian}, Duke Math. J. 136, No. 1, 1--49 (2007; Zbl 1111.22013) Full Text: DOI arXiv Euclid OpenURL References: [1] J. Adams, Nonlinear covers of real groups , Int. Math. Res. Not. 2004 , no. 75, 4031–4047. · Zbl 1066.22012 [2] J. Adams and D. Vogan, eds., Representation Theory of Lie Groups (Park City, Utah, 1998) , IAS/Park City Math. Ser. 8 , Amer. Math. Soc., Providence, 2000. [3] A. Borel, Linear Algebraic Groups , 2nd ed., Grad. Texts in Math. 126 , Springer, New York, 1991. · Zbl 0726.20030 [4] N. Bourbaki, Lie Groups and Lie Algebras, Chapters 4–6 , trans. Andrew Pressley, Elem. Math. (Berlin), Springer, Berlin, 2002. · Zbl 0983.17001 [5] I. D. Brown, Dual topology of a nilpotent Lie group , Ann. Sci. École Norm. Sup. (4) 6 (1973), 407–411. · Zbl 0284.57026 [6] L. J. Corwin and F. P. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications, Part I: Basic Theory and Examples , Cambridge Stud. Adv. Math. 18 , Cambridge Univ. Press, Cambridge, 1990. · Zbl 0704.22007 [7] V. V. Deodhar, On central extensions of rational points of algebraic groups , Amer. J. Math. 100 (1978), 303–386. JSTOR: · Zbl 0392.20027 [8] M. Duflo, Théorie de Mackey pour les groupes de Lie algébriques , Acta Math. 149 (1982), 153–213. · Zbl 0529.22011 [9] A. Dvorsky and S. Sahi, Tensor products of singular representations and an extension of the \(\theta\)-correspondence, Selecta Math. (N.S.) 4 (1998), 11–29. · Zbl 0963.22008 [10] -, Explicit Hilbert spaces for uncertain unipotent representations, II, Invent. Math. 138 (1999), 203–224. · Zbl 0937.22006 [11] W. T. Gan and G. Savin, On minimal representations definitions and properties , Represent. Theory 9 (2005), 46–93. · Zbl 1092.22012 [12] D. Ginzburg, S. Rallis, and D. Soudry, A tower of theta correspondences for \(G_ 2\) , Duke Math. J. 88 (1997), 537–624. · Zbl 0881.11051 [13] M. I. Graev and A. A. Kirillov, “Theory of group representations” (in Russian), in Proc. Internat. Congr. Math. (Moscow, 1966), Izdat. “Mir,” Moscow, 1968, 373–379.; translation in 31 Invited Addresses (8 in Abstract) at the International Congress of Mathematicians (Moscow, 1966), Amer. Math. Soc. Transl. Ser. 2 70 , Amer. Math. Soc., Providence, 1968. Mathematical Reviews (MathSciNet): [14] B. H. Gross and N. R. Wallach, On quaternionic discrete series representations, and their continuations , J. Reine Angew. Math. 481 (1996), 73–123. · Zbl 0857.22012 [15] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces , Grad. Stud. Math. 34 , Amer. Math. Soc., Providence, 2001. · Zbl 0993.53002 [16] R. Howe, “\(\theta\)-series and invariant theory” in Automorphic Forms, Representations and \(L\)-Functions, Part 1 (Corvallis, Ore., 1977) , Proc. Sympos. Pure Math. 33 , Amer. Math. Soc., Providence, 1979, 275–285. · Zbl 0423.22016 [17] -, On the role of the Heisenberg group in harmonic analysis , Bull. Amer. Math. Soc. (N.S.) 3 (1980), 821–843. · Zbl 0442.43002 [18] -, “Automorphic forms of low rank” in Noncommutative Harmonic Analysis and Lie Groups (Marseille, 1980) , Lecture Notes in Math. 880 , Springer, Berlin, 1981, 211–248. · Zbl 0463.10015 [19] -, “On a notion of rank for unitary representations of the classical groups” in Harmonic Analysis and Group Representations , Liguori, Naples, 1982, 223–331. [20] -, “Small unitary representations of classical groups” in Group Representations, Ergodic Theory, Operator Algebras, and Mathematical Physics (Berkeley, 1984) , Math. Sci. Res. Inst. Publ. 6 , Springer, New York, 1987, 121–150. · Zbl 0635.22014 [21] -, Oscillator representation, analytic preliminaries , unpublished notes, 1977. [22] R. E. Howe and C. C. Moore, Asymptotic properties of unitary representations , J. Funct. Anal. 32 (1979), 72–96. · Zbl 0404.22015 [23] R. Howe, G. Ratcliff, and N. Wildberger, “Symbol mappings for certain nilpotent groups” in Lie Group Representations, III (College Park, Md., 1982/1983) , Lecture Notes in Math. 1077 , Springer, Berlin, 1984, 288–320. · Zbl 0559.35010 [24] J. E. Humphreys, Linear Algebraic Groups , Grad. Texts in Math. 21 , Springer, New York, 1975. [25] A. Joseph, A preparation theorem for the prime spectrum of a semisimple Lie algebra , J. Algebra 48 (1977), 241–289. · Zbl 0405.17007 [26] D. Kazhdan, Some applications of the Weil representation , J. Analyse Mat. 32 (1977), 235–248. · Zbl 0445.22018 [27] A. A. Kirillov, Unitary representations of nilpotent Lie groups (in Russian), Uspekhi Mat. Nauk 17 , no. 4 (1962), 57–110. [28] -, Merits and demerits of the orbit method , Bull. Amer. Math. Soc. (N.S.) 36 (1999), 433–488. · Zbl 0940.22013 [29] -, Lectures on the Orbit Method , Grad. Stud. Math. 64 , Amer. Math. Soc., Providence, 2004. · Zbl 1229.22003 [30] J.-S. Li, On the classification of irreducible low rank unitary representations of classical groups , Compositio Math. 71 (1989), 29–48. · Zbl 0694.22012 [31] -, Singular unitary representations of classical groups , Invent. Math. 97 (1989), 237–255. · Zbl 0694.22011 [32] -, Automorphic forms with degenerate Fourier coefficients , Amer. J. Math. 119 (1997), 523–578. · Zbl 0871.11036 [33] J.-S. Li and C.-B. Zhu, On the decay of matrix coefficients for exceptional groups , Math. Ann. 305 (1996), 249–270. · Zbl 0854.22023 [34] H. Y. Loke and G. Savin, Rank and matrix coefficents for simply laced groups , preprint, 2005. [35] G. W. Mackey, Induced representations of locally compact groups, I , Ann. of Math. (2) 55 (1952), 101–139. JSTOR: · Zbl 0046.11601 [36] -, The Theory of Unitary Group Representations , Chicago Lectures in Math., Univ. of Chicago Press, Chicago, 1976. · Zbl 0344.22002 [37] K. Magaard and G. Savin, Exceptional \(\Theta\)-correspondences, I , Compositio Math. 107 (1997), 89–123. · Zbl 0878.22011 [38] C. C. Moore, Extensions and low dimensional cohomology theory of locally compact groups, I, II, Trans. Amer. Math. Soc. 113 (1964), 40–63. JSTOR: · Zbl 0131.26902 [39] -, Decomposition of unitary representations defined by discrete subgroups of nilpotent groups , Ann. of Math. (2) 82 (1965), 146–182. JSTOR: · Zbl 0139.30702 [40] H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants , Duke Math. J. 113 (2002), 133–192. · Zbl 1011.22007 [41] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory , Pure Appl. Math. 139 , Academic Press, Boston, 1994. · Zbl 0841.20046 [42] H. Salmasian, Isolatedness of the minimal representation and minimal decay of exceptional groups, Manuscripta Math. 120 (2006), 39–52. · Zbl 1109.22010 [43] R. Scaramuzzi, A notion of rank for unitary representations of general linear groups , Trans. Amer. Math. Soc. 319 (1990), 349–379. JSTOR: · Zbl 0704.22012 [44] J.-P. Serre, Lie Algebras and Lie Groups , 2nd ed., Lecture Notes in Math. 1500 , Springer, Berlin, 1992. [45] M. E. Taylor, Noncommutative Harmonic Analysis , Math. Surveys Monogr. 22 , Amer. Math. Soc., Providence, 1986. · Zbl 0604.43001 [46] J. Tits, Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen , Lecture Notes in Math. 40 , Springer, Berlin, 1967. · Zbl 0166.29703 [47] P. Torasso, Méthode des orbites de Kirillov-Duflo et représentations minimales des groupes simples sur un corps local de caractéristique nulle , Duke Math. J. 90 (1997), 261–377. · Zbl 0941.22017 [48] A. Weil, Sur certains groupes d’\(\!\)opérateurs unitaires , Acta Math. 111 (1964), 143–211. · Zbl 0203.03305 [49] -, Basic Number Theory , 3rd ed., Grundlehren Math. Wiss. 144 , Springer, New York, 1974. · Zbl 0326.12001 [50] M. H. Weissman, The Fourier-Jacobi map and small representations , Represent. Theory 7 (2003), 275–299. · Zbl 1065.22015 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.