×

zbMATH — the first resource for mathematics

An \(L^q\)-approach to Stokes and Navier-Stokes equations in general domains. (English) Zbl 1111.35033
Throughout this paper, \(\Omega\subseteq {\mathbb R}^3 \) means a general 3-dimensional domain with uniform \(C^2\)- boundary \(\partial\Omega\neq \varnothing\), where the main interest is focussed on domains with noncompact boundary \(\partial\Omega\). The standard approach to the Stokes equations in \(L^q\)-spaces, \(1<q<\infty\), cannot be extended to general unbounded domains in \(L^q\), \(q\neq2\); because of counterexamples concerning the Helmholtz decomposition. However, to develop a complete and analogous theory of the Stokes equations for arbitrary domains, the space \(L^q (\Omega)\) is replaced by \(\widetilde{L}^q(\Omega)=L^2(\Omega)\cap L^q(\Omega),~2 \leq q <\infty,\) and \(\widetilde{L}^q(\Omega) = L^2(\Omega)+L^q(\Omega),~ 1<q<2\).

MSC:
35Q30 Navier-Stokes equations
76D07 Stokes and related (Oseen, etc.) flows
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, R. A.,Sobolev Spaces. Pure Appl. Math., 65. Academic Press, New York-London, 1975.
[2] Amann, H.,Linear and Quasilinear Parabolic Problems, Vol. I. Monographs Math., 89. Birkhäuser Boston, Boston, MA, 1995. · Zbl 0819.35001
[3] –, On the strong solvability of the Navier-Stokes equations.J. Math. Fluid Mech., 2 (2000), 16–98. · Zbl 0989.35107 · doi:10.1007/s000210050018
[4] Bennett, C. &Sharpley, R.,Interpolation of Operators. Pure Appl. Math., 29. Academic Press, Boston, MA, 1988. · Zbl 0647.46057
[5] Bergh, J. &Löfström, J.,Interpolation Spaces. Grundlehren Math. Wiss., 223, Springer, Berlin-New York, 1976. · Zbl 0344.46071
[6] Bogovskiî, M. E., Solution of the first boundary value problem for the equation of continuity of an incompressible medium.Dokl. Akad. Nauk SSSR, 248 (1979), 1037–1040 (Russian); English translation inSoviet Math. Dokl., 20 (1979), 1094–1098.
[7] –, Decomposition ofL p (\(\Omega\),R n ) into the direct sum of subspaces of solenoidal and potential vector fields.Dokl. Akad. Nauk SSSR, 286 (1986), 781–786 (Russian); English translation inSoviet Math. Dokl., 33 (1986), 161–165.
[8] Caffarelli, L., Kohn, R. &Nirenberg, L., Partial regularity of suitable weak solutions of the Navier-Stokes equations.Comm. Pure Appl. Math., 35 (1982), 771–831. · Zbl 0509.35067 · doi:10.1002/cpa.3160350604
[9] Farwig, R. &Sohr, H., Generalized resolvent estimates for the Stokes system in bounded and unbounded domains.J. Math. Soc. Japan, 46 (1994), 607–643. · Zbl 0819.35109 · doi:10.2969/jmsj/04640607
[10] Friedman, A.,Partial Differential Equations. Holt, Rinehart and Winston, New York, 1969. · Zbl 0224.35002
[11] Fujiwara, D. &Morimoto, H., AnL r -theorem of the Helmholtz decomposition of vector fields.J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24 (1977), 685–700. · Zbl 0386.35038
[12] Galdi, G. P.,An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I. Linearized Steady Problems. Springer Tracts Nat. Philos., 38. Springer, New York, 1994. · Zbl 0949.35004
[13] –,An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. II. Nonlinear Steady Problems. Springer Tracts Nat. Philos., 39. Springer, New York, 1994. · Zbl 0949.35004
[14] Galdi, G. P. &Maremonti, P., Monotonic decreasing and asymptotic behavior of the kinetic energy for weak solutions of the Navier-Stokes equations in exterior domains.Arch. Rational Mech. Anal., 94 (1986), 253–266. · Zbl 0617.35108 · doi:10.1007/BF00279866
[15] Giga, Y., Analyticity of the semigroup generated by the Stokes operator inL r -spaces.Math. Z., 178 (1981), 297–329. · Zbl 0461.47019 · doi:10.1007/BF01214869
[16] Giga, Y. &Sohr, H., On the Stokes operator in exterior domains.J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 103–130.
[17] –, AbstractL p -estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains.J. Funct. Anal., 102 (1991), 72–94. · Zbl 0739.35067 · doi:10.1016/0022-1236(91)90136-S
[18] Heywood, J. G., The Navier-Stokes equations: on the existence, regularity and decay of solutions.Indiana Univ. Math. J., 29 (1980), 639–681. · Zbl 0494.35077 · doi:10.1512/iumj.1980.29.29048
[19] Heywood, J. G. &Walsh O. D., A counterexample concerning the pressure in the Navier-Stokes equations ast+.Pacific J. Math., 164 (1994), 351–359. · Zbl 0808.35101
[20] Hille, E. &Phillips, R. S.,Functional Analysis and Semi-Groups. Amer. Math. Soc. Colloq. Publ., 31. Amer. Math. Soc., Providence, RI, 1957. · Zbl 0078.10004
[21] Kozono, H. &Ogawa, T., Global strong solutions and its decay properties for the Navier-Stokes equations in three-dimensional domains with noncompact boundaries.Math. Z., 216 (1994), 1–30. · Zbl 0798.35127 · doi:10.1007/BF02572306
[22] Kozono, H. &Sohr, H., Remark on uniqueness of weak solutions to the Navier-Stokes equations.Analysis, 16 (1996), 255–271. · Zbl 0864.35082
[23] Leray, J., Sur le mouvement d’un liquid visqueux emplissant l’espace.Acta Math., 63 (1934), 193–248. · JFM 60.0726.05 · doi:10.1007/BF02547354
[24] Maslennikova, V. N. &Bogovskiî, M. E., Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries.Rend. Sem. Mat. Fis. Milano, 56 (1986), 125–138. · Zbl 0659.35030 · doi:10.1007/BF02925141
[25] Masuda, K., Weak solutions of Navier-Stokes equations.Tôhoku Math. J., 36 (1984), 623–646. · Zbl 0568.35077 · doi:10.2748/tmj/1178228767
[26] Miyakawa, T. &Sohr, H., On energy inequality, smoothness and large time behavior inL 2 for weak solutions of the Navier-Stokes equations in exterior domains.Math. Z., 199 (1988), 455–478. · Zbl 0642.35067 · doi:10.1007/BF01161636
[27] Reed, M. &Simon, B.,Methods of Modern Mathematical Physics, Vol. II. Academic Press, New York-London, 1975. · Zbl 0308.47002
[28] de Rham, G.,Variétés différentiables Hermann, Paris, 1960.
[29] Shinbrot, M. &Kaniel, S., The initial value problem for the Navier-Stokes equations.Arch. Rational Mech. Anal., 21 (1966), 270–285. · Zbl 0148.45504 · doi:10.1007/BF00282248
[30] Simader, C. G. &Sohr, H., A new approach to the Helmholtz decomposition and the Neumann problem inL q -spaces for bounded and exterior domains, inMathematical Problems Relating to the Navier-Stokes Equations, pp. 1–35. Ser. Adv. Math. Appl. Sci., 11. World Sci. Publishing, River Edge, NJ, 1992. · Zbl 0791.35096
[31] de Simon, L., Un’applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine.Rend. Sem. Mat. Univ. Padova, 34 (1964), 205–223. · Zbl 0196.44803
[32] Sohr, H.,The Navier-Stokes Equations, Birkhäuser, Basel, 2001. · Zbl 0983.35004
[33] Sohr, H., von Wahl, W. &Wiegner, M., Zur Asymptotik der Gleichungen von Navier-Stokes.Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1986:3 (1986), 45–69. · Zbl 0629.35100
[34] Solonnikov, V. A., Estimates for solutions of nonstationary Navier-Stokes equations.Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153–231 (Russian); English translation inJ. Soviet Math., 8 (1977), 467–529.
[35] Temam, R.,Navier-Stokes Equations. Stud. Math. Appl., 2, North-Holland, Amsterdam-New York-Oxford, 1977. · Zbl 0383.35057
[36] Triebel, H.,Interpolation Theory, Function Spaces, Differential Operators. North-Holland Math. Library, 18. North-Holland, Amsterdam-New York, 1978. · Zbl 0387.46033
[37] Wiegner, M., The Navier-Stokes equations–a neverending challenge?Jahresber. Deutsch. Math.-Verein., 101 (1999), 1–25. · Zbl 0924.35100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.