[1] |
Ball, J.: Global attractors for damped semilinear wave equations. Discrete contin. Dyn. syst. 10, 31-52 (2004) · Zbl 1056.37084 |

[2] |
Bona, J. L.; Dougalis, V. A.: An initial and boundary value problem for a model equation for propagation of long waves. J. math. Anal. appl. 75, 503-522 (1980) · Zbl 0444.35069 |

[3] |
Brown, R.; Perry, P.; Shen, Z.: On the dimension of attractor for the non-homogeneous Navier -- stomes equations in non-smooth domains. Indiana univ. Math. J. 49, 81-112 (2000) · Zbl 0969.35105 |

[4] |
Chepyzhov, V. V.; Vishik, M. I.: Non-autonomous evolutionary equations with translation compact symbols and their attractors. C. R. Acad. sci. Paris sér. I 321, 153-158 (1995) · Zbl 0837.35059 |

[5] |
Chepyzhov, V. V.; Vishik, M. I.: Trajectory attractors for reaction-diffusion systems. Topol. methods nonlinear anal. 7, 49-76 (1996) · Zbl 0894.35010 |

[6] |
Chepyzhov, V. V.; Vishik, M. I.: Evolution equations and their trajectory attractors. J. math. Pures appl. 76, 913-964 (1997) · Zbl 0896.35032 |

[7] |
Chepyzhov, V. V.; Vishik, M. I.: Attractors for equations of mathematical physics. Amer. math. Soc. colloq. Publ. 49 (2002) · Zbl 0986.35001 |

[8] |
Chepyzhov, V. V.; Vishik, M. I.: On non-autonomous sine -- Gordon type equations with a simple global attractor and some averaging. Discrete contin. Dyn. syst. 12, 27-38 (2005) · Zbl 1067.35017 |

[9] |
Efendiev, M.; Zelik, S.: The attractor for a nonlinear reaction-diffusion system in an unbounded domain. Comm. pure appl. Math. 54, 625-688 (2001) · Zbl 1041.35016 |

[10] |
Hale, J. K.: Asymptotic behavior of dissipative systems. Math. surveys monogr. 25 (1988) · Zbl 0642.58013 |

[11] |
Haraux, A.: Systèmes dynamiques dissipatifs et applications. (1991) · Zbl 0726.58001 |

[12] |
Karch, G.: Asymptotic behavior of solutions to some pseudoparabolic equations. Math. methods appl. Sci. 21, 271-289 (1997) · Zbl 0869.35057 |

[13] |
Karachlios, N. I.; Stavrakakis, N. M.: Existence of global attractors for semilinear dissipative wave equations on RN. J. differential equations 157, 183-205 (1999) |

[14] |
Ladyzhenskaya, O. A.: Attractors for semigroups and evolution equations. (1991) · Zbl 0755.47049 |

[15] |
S.S. Lu, H.Q. Wu, C.K. Zhong, Attractors for non-autonomous 2D Navier -- Stokes equations with normal external forces, submitted for publication · Zbl 1083.35094 |

[16] |
Ma, Q.; Wang, S.; Zhong, C.: Necessary and sufficient conditions for the existence of global attractors for semigroups and applications. Indiana univ. Math. J. 51, 1541-1559 (2002) · Zbl 1028.37047 |

[17] |
Miranville, A.; Wang, X.: Upper bound on the dimension of the attractor for nonhomogeneous Navier -- Stokes equations. Discrete contin. Dyn. syst. 2, 95-110 (1996) · Zbl 0949.35112 |

[18] |
Moise, I.; Rosa, R.; Wang, X.: Attractors for noncompact semigroups via energy equations. Nonlinearity 11, 1369-1393 (1998) · Zbl 0914.35023 |

[19] |
Moise, I.; Rosa, R.; Wang, X.: Attractors for noncompact non-autonomous systems via energy equations. Discrete contin. Dyn. syst. 10, 473-496 (2004) · Zbl 1060.35023 |

[20] |
Robinson, J. C.: Infinite-dimensional dynamical systems an introduction to dissipative parabolic pdes and the theory of global attractors. (2001) · Zbl 0980.35001 |

[21] |
Sell, G. R.; You, Y.: Dynamics of evolutionary equations. (2002) · Zbl 1254.37002 |

[22] |
Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics. (1997) · Zbl 0871.35001 |

[23] |
Zelik, S.: The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete contin. Dyn. syst. 7, 593-641 (2001) · Zbl 1153.35311 |