Berenhaut, Kenneth S.; Stević, Stevo The behaviour of the positive solutions of the difference equation \(x_n = A + (\frac{x_{n-2}}{x_{n-1}})^p\). (English) Zbl 1111.39003 J. Difference Equ. Appl. 12, No. 9, 909-918 (2006). For the difference equation in the title with positive parameters and \(p\neq 1\) it is shown that there exist unbounded solutions if \(p>1\), that all positive solutions converge to a 2-periodic solution it \((A+1)/2<p<1\), and that all solutions converge to \(A+1\) in the other cases of \(p\). The case \(p=1\) was already treated by A. M. Amleh, E. A. Grove, G. Ladas and D. A. Georgiou [J. Math. Anal. Appl. 233, No. 2, 790–798 (1999; Zbl 0962.39004)]. Reviewer: Lothar Berg (Rostock) Cited in 44 Documents MSC: 39A11 Stability of difference equations (MSC2000) 39A20 Multiplicative and other generalized difference equations Keywords:rational difference equation; stability; boundedness; period two solution; unbounded solutions; positive solutions Citations:Zbl 0962.39004 PDF BibTeX XML Cite \textit{K. S. Berenhaut} and \textit{S. Stević}, J. Difference Equ. Appl. 12, No. 9, 909--918 (2006; Zbl 1111.39003) Full Text: DOI OpenURL References: [1] DOI: 10.1006/jmaa.1999.6346 · Zbl 0962.39004 [2] Berenhaut K.S., Proceedings of the American Mathematical Society (2006) [3] DOI: 10.1080/10236190500331370 · Zbl 1088.39017 [4] DOI: 10.1080/10236190500539543 · Zbl 1095.39004 [5] Berg L., Asymptotische Darstellungen und Entwicklungen (1968) · Zbl 0165.36901 [6] Berg L., Zeitschrift für Analysis und ihre Anwendungen 21 pp 1061– (2002) [7] DOI: 10.1080/10236190310001625280 · Zbl 1056.39003 [8] DOI: 10.1080/10236190512331328370 · Zbl 1080.39002 [9] Berg L., Zeitschrift für Analysis und ihre Anwendungen 24 pp 217– (2005) [10] DOI: 10.1080/1023619021000042162 · Zbl 1049.39026 [11] DOI: 10.1080/10236190008808242 [12] DOI: 10.1016/j.aml.2003.09.014 · Zbl 1125.39003 [13] Grove E.A., Periodicities in Nonlinear Difference Equations (2004) · Zbl 1078.39009 [14] DOI: 10.1155/DDNS.2005.135 · Zbl 1111.39007 [15] Kocić V., Mathematics and its Applications (1993) [16] Kulenović M.R.S., Dynamics of Second Order Rational Difference Equations (2002) · Zbl 0981.39011 [17] DOI: 10.1080/10236190410001731434 · Zbl 1061.39006 [18] DOI: 10.1090/S0002-9939-02-06611-X · Zbl 1014.39010 [19] DOI: 10.4064/cm93-2-6 · Zbl 1029.39006 [20] Stević S., Indian Journal of Pure and Applied Mathematics 34 pp 1681– (2003) [21] Stević S., Taiwanese Journal of Mathematics 7 pp 249– (2003) [22] DOI: 10.1080/10236190412331272616 · Zbl 1057.39005 [23] Stević S., Rostocker Mathematisches Kolloquium 59 pp 3– (2004) [24] DOI: 10.1016/j.jmaa.2005.04.077 · Zbl 1090.39009 [25] DOI: 10.1016/j.aml.2005.05.014 · Zbl 1095.39010 [26] Stević S., Applied Mathematics Letters [27] Wang L.L., Dynamics of Continuous, Discrete and Impulsive System Series A Mathematical Analysis 12 pp 457– (2005) [28] DOI: 10.1007/BF02936054 · Zbl 1068.39030 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.