zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces. (English) Zbl 1111.47058
The author studies implicit and explicit viscosity-like methods for finding specific fixed points of infinite countable families of nonexpansive self-mappings in Hilbert spaces. He obtains strong convergence results. His results are of practical interest from the numerical point of view.

47J25Iterative procedures (nonlinear operator equations)
47H09Mappings defined by “shrinking” properties
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
65J15Equations with nonlinear operators (numerical methods)
Full Text: DOI
[1] Bauschke, H. H.: The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space. J. math. Anal. appl. 202, No. 1, 150-159 (1996) · Zbl 0956.47024
[2] Browder, F. E.: Convergence of approximants to fixed points of non-expansive maps in Banach spaces. Arch. ration. Mech. anal. 24, 82-90 (1967) · Zbl 0148.13601
[3] Combettes, P. L.: Construction d’un point fixe commun d’une famille de contractions fermes. C. R. Acad. sci. Paris sér. Math. 320, No. 11, 1385-1390 (1995) · Zbl 0830.65047
[4] Ciric, L. J. B.; Ume, J. S.; Khan, M. S.: On the convergence of the Ishikawa iterates to a common fixed point of two mappings. Arch. math. (Brno) 39, 123-127 (2003) · Zbl 1109.47312
[5] Goebel, K.; Kirk, W. A.: Topics in metric fixed point theory. Cambridge stud. Adv. math. 28 (1990) · Zbl 0708.47031
[6] Halpern, B.: Fixed points of nonexpanding maps. Bull. amer. Math. soc. 73, 957-961 (1967) · Zbl 0177.19101
[7] Kimura, Y.; Takahashi, W.; Toyoda, M.: Convergence to common fixed points of a finite family of nonexpansive mappings. Arch. math. 84, No. 4, 350-363 (2005) · Zbl 1086.47051
[8] Lions, P. L.: Approximation de points fixes de contractions. C. R. Acad. sci. Paris sér. A 284, 1357-1359 (1977) · Zbl 0349.47046
[9] Moudafi, A.: Viscosity approximations methods for fixed-points problems. J. math. Anal. appl. 241, 46-55 (2000) · Zbl 0957.47039
[10] O’hara, J. G.; Pillay, P.; Xu, H. K.: Iterative approaches to finding nearest common fixed points of nonexpansive mappings in Hilbert spaces. Nonlinear anal. 54, 1417-1426 (2003) · Zbl 1052.47049
[11] Sun, Z. H.: Strong convergence of a implicit iterative process for a finite family of asymptotically quasi-nonexpansive mappings. J. math. Anal. appl. 286, 351-358 (2003) · Zbl 1095.47046
[12] Wittman, R.: Approximation of fixed points of nonexpansive mappings. Arch. math. 58, 486-491 (1992) · Zbl 0797.47036
[13] Xu, H. K.; Ori, M. G.: An implicit iterative process for nonexpansive mappings. Numer. funct. Anal. optim. 22, 767-773 (2001) · Zbl 0999.47043
[14] Yamada, I.; Ogura, N.: Hybrid steepest descent method for the variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings. Numer. funct. Anal. optim. 25, No. 7 -- 8, 619-655 (2004) · Zbl 1095.47049
[15] Zhou, Y. Y.; Chang, S. S.: Convergence of implicit iterative process for a finite family of asymptotically nonexpansive mappings in Banach spaces. Numer. funct. Anal. optim. 23, 911-921 (2002) · Zbl 1041.47048