zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Non-linear peristaltic flow of a non-Newtonian fluid under effect of a magnetic field in a planar channel. (English) Zbl 1111.76348
Summary: This paper is devoted to the study of peristaltic flow of a fourth-grade fluid in a channel under the considerations of long wavelength and low Reynolds number. The flow is examined in a wave frame of reference moving with velocity of the wave. The analytic solution is obtained in the form of a stream function from which the axial velocity and axial pressure gradient are derived. The results for the pressure rise and frictional force per wavelength are computed numerically. The computational results indicate that the pressure rise and frictional force per wavelength increase in the case of non-Newtonian fluid when compared with Newtonian fluid. Several graphs of physical interest are displayed and discussed.

MSC:
76Z05Physiological flows
76A05Non-Newtonian fluids
76W05Magnetohydrodynamics and electrohydrodynamics
92C35Physiological flows
WorldCat.org
Full Text: DOI
References:
[1] Latham TW. Fluid motion in a peristaltic pump. MS thesis, M III Cambridge, Mass, 1966.
[2] Shapiro, A. H.; Jaffrin, M. Y.; Weinberg, S. L.: Peristaltic pumping with long wavelength at low Reynolds number. J fluid mech 37, 799-825 (1969)
[3] Jaffrin, M. Y.: Inertia and streamline curvature effects on peristaltic pumping. Int J engng sci 11, 681-699 (1973)
[4] Fung, Y. C.; Yih, C. S.: Peristaltic transport. Trans ASME, J appl mech 35, 669-675 (1968) · Zbl 0182.59302
[5] Provost, A. M.; Schwarz, W. H.: A theoretical study of viscous effects in peristaltic pumping. J fluid mech 279, 177-195 (1994) · Zbl 0825.76043
[6] Antanovskii, L. K.; Ramkissoon, H.: Long wave peristaltic transport of a compressible viscous fluid in a finite pipe subject to a time-dependent pressure drop. Fluid dyn res 19, 115-123 (1997)
[7] Dusey M. Numerical analysis of lubrication theory and peristaltic transport in the esophagus. PhD thesis. Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, 1993.
[8] Brown, T. D.; Hung, T. K.: Computational and experimental investigations of two dimensional nonlinear peristaltic flows. J fluid mech 83, 249-272 (1977) · Zbl 0373.76099
[9] Takabatake, S.; Ayukawa, K.; Mori, A.: Peristaltic pumping in circular cylindrical tubes: a numerical study of fluid transport and its efficiency. J fluid mech 193, 269-283 (1988)
[10] Agrawal, H. L.; Anwaruddin, B.: Peristaltic flow of blood in a branch. Ranchi univ math J 15, 111-118 (1984) · Zbl 0579.76128
[11] Mekheimer KhS. Nonlinear peristaltic transport of magnetohydrodynamic flow in an inclined planar channel. Int J Math Math Sci, in press.
[12] Siddiqui, A. M.; Schwarz, W. H.: Peristaltic flow of a second order fluid in tubes. J non-Newtonian fluid mech 35, 257-284 (1994)
[13] Srivastava, L. M.; Srivastava, V. P.: Peristaltic transport of blood: Casson model-II. J biomech 17, 821-830 (1984)
[14] Srivastava, L. M.: Peristaltic transport of a couple stress fluid. Rheol acta 25, 638-641 (1986)
[15] Mekheimer KhS. Peristaltic transport of a couple stress fluid in a uniform and non-uniform channels. Biorheology, in press.
[16] Raju, K. K.; Devanathan, R.: Peristaltic motion of a non-Newtonian fluid. Rheol acta 11, 170-178 (1972) · Zbl 0246.76002
[17] Raju, K. K.; Devanathan, R.: Peristaltic motion of a non-Newtonian fluid II: Viscoelastic fluid. Rheol acta 13, 944-948 (1974) · Zbl 0298.76003
[18] Misra, J. C.; Pandey, S. K.: Peristaltic transport of a non-Newtonian fluid with a peripheral layer. Int J engng sci 37, 1841-1858 (1999) · Zbl 1210.76016
[19] Mishra, M.; Rao, A. R.: Peristaltic transport of a Newtonian fluid in an asymmetric channel. Z angew math phys 54, 532-550 (2003) · Zbl 1099.76545
[20] Zien, T. F.; Ostrach, S.: A long wave approximation to peristaltic motion. J biomech 3, 63-75 (1970)
[21] Siddiqui, A. M.; Schwarz, W. H.: Peristaltic pumping of a third order fluid in a planar channel. Rheol acta 32, 47-56 (1993)
[22] Hayat, T.; Wang, Y.; Siddiqui, A. M.; Hutter, K.: Peristaltic motion of a Johnson-Segalman fluid in a planar channel. Math problems engng 1, 1-23 (2003) · Zbl 1074.76003
[23] Hayat, T.; Wang, Y.; Siddiqui, A. M.; Hutter, K.; Asghar, S.: Peristaltic transport of a third-order fluid in a circular cylindrical tube. Math models methods appl sci 12, 1691-1706 (2002) · Zbl 1041.76002
[24] Srinivasacharya, D.; Mishra, M.; Rao, A. R.: Peristaltic pumping of a micropolar fluid in a tube. Acta mech 161, 165-178 (2003) · Zbl 1064.76010
[25] Rao, A. R.; Usha, S.: Peristaltic transport of two immiscible viscous fluids in a circular tube. J fluid mech 298, 271-285 (1995) · Zbl 0848.76100