×

zbMATH — the first resource for mathematics

Existence of two-cluster threshold resonances and the \(N\)-body Efimov effect. (English) Zbl 1111.81146
Summary: We prove the existence of two-cluster threshold resonances in \(N\)-body problems and study their perturbation by intercluster interactions. As application, we construct concrete examples based on Yukawa potentials for which the \(N\)-body Efimov effect happens with \(N\geqslant 4\).

MSC:
81U10 \(n\)-body potential quantum scattering theory
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRevD.7.2517 · doi:10.1103/PhysRevD.7.2517
[2] DOI: 10.1016/0370-2693(95)00348-O · doi:10.1016/0370-2693(95)00348-O
[3] DOI: 10.1016/0370-2693(95)00348-O · doi:10.1016/0370-2693(95)00348-O
[4] DOI: 10.1007/978-3-662-03403-3 · doi:10.1007/978-3-662-03403-3
[5] DOI: 10.1016/0370-2693(70)90349-7 · doi:10.1016/0370-2693(70)90349-7
[6] Evans W. D., Trans. Am. Math. Soc. 322 pp 593– (1990)
[7] DOI: 10.1215/S0012-7094-79-04631-3 · Zbl 0448.35080 · doi:10.1215/S0012-7094-79-04631-3
[8] DOI: 10.1007/BF01942369 · Zbl 0462.35082 · doi:10.1007/BF01942369
[9] DOI: 10.1016/0003-4916(79)90339-7 · doi:10.1016/0003-4916(79)90339-7
[10] DOI: 10.1007/BF02096734 · Zbl 0785.35070 · doi:10.1007/BF02096734
[11] DOI: 10.1016/0022-1236(91)90038-7 · Zbl 0761.35078 · doi:10.1016/0022-1236(91)90038-7
[12] DOI: 10.1017/S0027763000004426 · Zbl 0827.35099 · doi:10.1017/S0027763000004426
[13] Vugal’ter S. A., Dokl. Akad. Nauk SSSR 267 pp 784– (1982)
[14] DOI: 10.1016/0034-4877(84)90024-7 · Zbl 0581.46063 · doi:10.1016/0034-4877(84)90024-7
[15] DOI: 10.1007/s00023-003-0139-3 · Zbl 1049.81026 · doi:10.1007/s00023-003-0139-3
[16] DOI: 10.1016/S0022-1236(03)00170-8 · Zbl 1059.81061 · doi:10.1016/S0022-1236(03)00170-8
[17] Wang X. P., Matemática Contemporânea 26 pp 135– (2004)
[18] DOI: 10.1070/SM1974v023n04ABEH001730 · Zbl 0342.35041 · doi:10.1070/SM1974v023n04ABEH001730
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.