zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay-range-dependent stability for systems with time-varying delay. (English) Zbl 1111.93073
Summary: This paper is concerned with the stability analysis for systems with time-varying delay in a range. An appropriate type of Lyapunov functionals is proposed to investigate the delay-range-dependent stability problem. The present results may improve the existing ones due to a method to estimate the upper bound of the derivative of Lyapunov functional without ignoring some useful terms and the introduction of additional terms into the proposed Lyapunov functional, which take into account the range of delay. Numerical examples are given to demonstrate the effectiveness and the benefits of the proposed method.

93D30Scalar and vector Lyapunov functions
93C05Linear control systems
93C15Control systems governed by ODE
Full Text: DOI
[1] Fridman, E.; Shaked, U.: An improved stabilization method for linear time-delay systems. IEEE transactions on automatic control 47, 1931-1937 (2002)
[2] Fridman, E.; Shaked, U.: Delay-dependent stability and H$\infty $control: constant and time-varying delays. International journal of control 76, 48-60 (2003) · Zbl 1023.93032
[3] Gao, H.; Lam, J.; Wang, C.; Wang, Y.: Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay. IEE Proceedings--control theory and applications 151, 691-698 (2004)
[4] Gu, K.; Kharitonov, V. L.; Chen, J.: Stability of time-delay systems. (2003) · Zbl 1039.34067
[5] Gu, K.; Niculescu, S. -I.: Additional dynamics in transformed time delay systems. IEEE transactions on automatic control 45, 572-575 (2000) · Zbl 0986.34066
[6] Hale, J. K.; Lunel, S. M. Verduyn: Introduction of functional differential equations. (1993) · Zbl 0787.34002
[7] Han, Q. L.: On robust stability of neutral systems with time-varying discrete delay and norm-bounded uncertainty. Automatica 40, 1087-1092 (2004) · Zbl 1073.93043
[8] Han, Q. L.: A descriptor system approach to robust stability of uncertain neutral systems with discrete and distributed delays. Automatica 40, 1791-1796 (2004) · Zbl 1075.93032
[9] Han, Q. L.; Gu, K.: Stability of linear systems with time-varying delay: A generalized discretized Lyapunov functional approach. Asian journal of control 3, 170-180 (2001)
[10] He, Y.; Wu, M.; She, J. H.; Liu, G. P.: Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays. Systems & control letters 51, 57-65 (2004) · Zbl 1157.93467
[11] He, Y.; Wu, M.; She, J. H.; Liu, G. P.: Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties. IEEE transactions on automatic control 49, 828-832 (2004)
[12] Jiang, X.; Han, Q. L.: On H$\infty $control for linear systems with interval time-varying delay. Automatica 41, 2099-2106 (2005) · Zbl 1100.93017
[13] Kharitonov, V. L.; Niculescu, S. -I.: On the stability of linear systems with uncertain delay. IEEE transactions on automatic control 48, 127-132 (2003)
[14] Michiels, W.; Assche, V. V.; Niculescu, S. -I.: Stabilization of time-delay systems with a controlled time-varying delay and applications. IEEE transactions on automatic control 50, 493-504 (2005)
[15] Moon, Y. S.; Park, P.; Kwon, W. H.; Lee, Y. S.: Delay-dependent robust stabilization of uncertain state-delayed systems. International journal of control 74, 1447-1455 (2001) · Zbl 1023.93055
[16] Park, P.: A delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE transactions on automatic control 44, 876-877 (1999) · Zbl 0957.34069
[17] Wu, M.; He, Y.; She, J. H.: New delay-dependent stability criteria and stabilizing method for neutral systems. IEEE transactions on automatic control 49, 2266-2271 (2004)
[18] Wu, M.; He, Y.; She, J. H.; Liu, G. P.: Delay-dependent criteria for robust stability of time-varying delay systems. Automatica 40, 1435-1439 (2004) · Zbl 1059.93108
[19] Xu, S.; Lam, J.: Improved delay-dependent stability criteria for time-delay systems. IEEE transactions on automatic control 50, 384-387 (2005)
[20] Xu, S.; Lam, J.; Zou, Y.: Simplified descriptor system approach to delay-dependent stability and performance analyses for time-delay systems. IEE Proceedings--control theory and applications 152, 147-151 (2005)