×

Pullback of the lifting of elliptic cusp forms and Miyawaki’s conjecture. (English) Zbl 1112.11022

The existence of liftings of modular forms from one group to another is a very interesting phenomenon with ramifications in the theory of \(L\)-functions and Galois representations, as well as in generalizations of the Ramanujan conjecture. The paper under review continues the author’s significant contributions to the subject, by constructing a lifting from Siegel eigenforms of degree \(r\) to Siegel eigenforms of degree \(r+2n\). All the forms considered are of level \(1\).
Let \(f\) be a normalized Hecke eigenform of degree \(1\) and weight \(2k\). In a previous article [Ann. Math. (2) 154, No. 3, 641–681 (2001; Zbl 0998.11023)], the author constructed a lifting of \(f\) to a Siegel cusp form \(F\) of even degree \(2n+2r\) and weight \(k+n+r\), whose standard \(L\)-function is \[ \zeta(s)\prod_{i=1}^{2n+2r}L(s+k+n+r-i,f). \] Here \(n\) and \(r\) can be any positive integers such that \(n+r\equiv k\pmod{2}\). The construction of \(F\) uses an auxiliary half-integral form \(h\) in the Kohnen plus-subspace.
Suppose now that we are given a Hecke eigenform \(g\) of degree \(r\) and weight \(k+n\), with standard \(L\)-function \(L(s,g,\mathrm{st})\). By a procedure called “pullback to a block diagonal subset”, the author constructs a cusp form \(\mathcal{F}_{h,g}\) of degree \(2n+r\); if nonzero, this cusp form is a Hecke eigenform and its standard \(L\)-function is \[ L(s,\mathcal{F}_{g,h},\mathrm{st})=L(s,g,\mathrm{st}) \prod_{i=1}^{2n} L(s+k+n-i,f). \] An application of this result is given in Sections 2 and 7, by proving a conjecture of I. Miyawaki [Mem. Fac. Sci., Kyushu Univ., Ser. A 46, No. 2, 307–339 (1992; Zbl 0780.11022)].
It would be good to figure out when the lifting \(\mathcal{F}_{g,h}\) is nonzero. The author proposes a conjecture in this direction, in the form of a formula relating the Petersson inner product \(\langle \mathcal{F}_{g,h},\mathcal{F}_{g,h}\rangle\) to a certain \(L\)-value constructed from \(f\) and \(g\). The paper concludes with some numerical evidence for this conjecture.

MSC:

11F46 Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] J. Arthur, “Unipotent automorphic representations: Conjectures” in Orbites unipotentes et représentations, II , Astérisque 171 –. 172 , Soc. Math. France, Montrouge, 1989, 13–71. · Zbl 0728.22014
[2] S. BÖCherer, Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen , Math. Z. 183 (1983), 21–46. · Zbl 0497.10020
[3] -, Über die Funktionalgleichung automorpher \(L\)-Funktionen zur Siegelschen Modulgruppe , J. Reine Angew. Math. 362 (1985), 146–168. · Zbl 0565.10025
[4] -, “Siegel modular forms and theta series” in Theta Functions –.-Bowdoin 1987, Part 2 (Brunswick, Maine, 1987) , Proc. Sympos. Pure Math. 49 , Part 2, Amer. Math. Soc., Providence, 1989, 3–17.
[5] R. E. Borcherds, E. Freitag, and R. Weissauer, A Siegel cusp form of degree 12 and weight 12 , J. Reine Angew. Math. 494 (1998), 141–153. · Zbl 0885.11034
[6] S. Breulmann and M. Kuss, On a conjecture of Duke-Imamo\(\barg\)lu , Proc. Amer. Math. Soc. 128 (2000), 1595–1604. JSTOR: · Zbl 1099.11506
[7] Y. Choie and W. Kohnen, On the Petersson norm of certain Siegel modular forms , Ramanujan J. 7 (2003), 45–48. · Zbl 1047.11038
[8] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups , 3rd ed., Grundlehren Math. Wiss. 290 , Springer, New York, 1999. · Zbl 0915.52003
[9] P. Deligne, “Valeurs de fonctions \(L\) et périodes d’intégrales” in Automorphic Forms, Representations and \(L\)-Functions, Part 2 (Corvallis, Ore., 1977) , Proc. Sympos. Pure Math. 33 , Amer. Math. Soc., Providence, 1979, 313–346. · Zbl 0449.10022
[10] T. Dokchitser, Computing special values of motivic L-functions , · Zbl 1139.11317
[11] W. Duke and Ö. Imamo\(\bar\hbox\fontsize88\selectfontG\)lu, Siegel modular forms of small weight , Math. Ann. 310 (1998), 73–82. · Zbl 0892.11017
[12] M. Eichler and D. Zagier, The Theory of Jacobi Forms , Progr. Math. 55 , Birkhäuser, Boston, 1985. · Zbl 0554.10018
[13] V. A. Erokhin [V. A. Erohin], Theta series of even unimodular \(24\)-dimensional lattices (in Russian), Zap. Naučn. Sem. Leningrad Otdel. Mat. Inst. Steklov. (LOMI) 86 (1979), 82–93.; English translation in J. Soviet Math. 17 (1981), 1999–2008. · Zbl 0418.10024
[14] E. Freitag, Siegelsche Modulfunktionen , Springer, Berlin, 1983.
[15] M. Furusawa, On Petersson norms for some liftings , Math. Ann. 267 (1984), 543–548. · Zbl 0519.10020
[16] P. B. Garrett, “Pullbacks of Eisenstein series; applications” in Automorphic Forms of Several Variables (Katata, Japan, 1983) , Progr. Math. 46 , Birkhäuser, Boston, 1984, 114–137. · Zbl 0544.10023
[17] T. Ikeda, On the theory of Jacobi forms and the Fourier-Jacobi coefficients of Eisenstein series , J. Math. Kyoto Univ. 34 (1994), 615–636. · Zbl 0822.11041
[18] -, On the lifting of elliptic cusp forms to Siegel cusp forms of degree \(2n\) , Ann. of Math. (2) 154 (2001), 641–681. JSTOR: · Zbl 0998.11023
[19] W. Kohnen, Modular forms of half-integral weight on \(\Gamma_0(4)\) , Math. Ann. 248 (1980), 249–266. · Zbl 0416.10023
[20] -, On the Petersson norm of a Siegel-Hecke eigenform of degree two in the Maass space , J. Reine Angew. Math. 357 (1985), 96–100. · Zbl 0547.10026
[21] -, Lifting modular forms of half-integral weight to Siegel modular forms of even genus , Math. Ann. 322 (2002), 787–809. · Zbl 1004.11020
[22] W. Kohnen and N.-P. Skoruppa, A certain Dirichlet series attached to Siegel modular forms of degree two , Invent. Math. 95 (1989), 541–558. · Zbl 0665.10019
[23] W. Kohnen and D. Zagier, Values of \(L\)-series of modular forms at the center of the critical strip , Invent. Math. 64 (1981), 175–198. · Zbl 0468.10015
[24] A. Krieg, A Dirichlet series for modular forms of degree \(n\) , Acta Arith. 59 (1991), 243–259. · Zbl 0707.11037
[25] N. Kurokawa, Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two , Invent. Math. 49 (1978), 149–165. · Zbl 0397.10018
[26] D. Lanphier, Petersson norms and liftings of Hilbert modular forms , J. Number Theory 106 (2004), 238–258. · Zbl 1050.11051
[27] I. Miyawaki, Numerical examples of Siegel cusp forms of degree \(3\) and their zeta-functions , Mem. Fac. Sci. Kyushu Univ. Ser. A 46 (1992), 307–339. · Zbl 0780.11022
[28] C. Moeglin, M.-F. VignéRas, and J.-L. Waldspurger, Correspondances de Howe sur un corps \(p\)-adique , Lecture Notes in Math. 1291 , Springer, Berlin, 1987. · Zbl 0642.22002
[29] G. Nebe, two maple files related to [30]: Hecke operators and the eigenforms; Structure constants for the multiplication of the eigenforms, http://www.math.rwth-aachen.de/\(\sim\)Gabriele.Nebe/ · Zbl 0978.20004
[30] G. Nebe and B. Venkov, On Siegel modular forms of weight 12 , J. Reine Angew. Math. 531 (2001), 49–60. · Zbl 0997.11039
[31] \Ausc T. Oda, On the poles of Andrianov \(L\)-functions , Math. Ann. 256 (1981), 323–340. · Zbl 0465.10021
[32] S. Rallis, On the Howe duality conjecture , Compositio Math. 51 (1984), 333–399. · Zbl 0624.22011
[33] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions , Kanô Memorial Lectures 1 , Iwanami Shoten, Tokyo, Publ. Math. Soc. Japan 11 , Princeton Univ. Press, Princeton, 1971. · Zbl 0221.10029
[34] -, On modular forms of half integral weight , Ann. of Math. (2) 97 (1973), 440–481. JSTOR: · Zbl 0266.10022
[35] -, Euler Products and Eisenstein Series , CBMS Reg. Conf. Ser. Math. 93 , Amer. Math. Soc., Providence, 1997.
[36] H. Yoshida, Motives and Siegel modular forms , Amer. J. Math. 123 (2001), 1171–1197. · Zbl 0998.11022
[37] D. Zagier, “Sur la conjecture de Saito-Kurokawa (d’après H. Maass)” in Séminaire de Théorie des nombres, Paris 1979–80. , Progr. Math. 12 , Birkhäuser, Boston, 1981, 371–394. · Zbl 0456.10011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.