×

zbMATH — the first resource for mathematics

Contractions of low-dimensional Lie algebras. (English) Zbl 1112.17007
Summary: Theoretical background of continuous contractions of finite-dimensional Lie algebras is rigorously formulated and developed. In particular, known necessary criteria of contractions are collected and new criteria are proposed. A number of requisite invariant and semi-invariant quantities are calculated for wide classes of Lie algebras including all low-dimensional Lie algebras. An algorithm that allows one to handle one-parametric contractions is presented and applied to low-dimensional Lie algebras. As a result, all one-parametric continuous contractions for both the complex and real Lie algebras of dimensions not greater than 4 are constructed with intensive usage of necessary criteria of contractions and with studying correspondence between real and complex cases. Levels and colevels of low-dimensional Lie algebras are discussed in detail. Properties of multiparametric and repeated contractions are also investigated.

MSC:
17B05 Structure theory for Lie algebras and superalgebras
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1016/S0024-3795(01)00473-6 · Zbl 0998.17002
[2] Barut A. O., Helv. Phys. Acta 46 pp 496– (1973)
[3] Borel A., Linear Algebraic Groups (1969) · Zbl 0186.33201
[4] DOI: 10.1088/0305-4470/39/20/009 · Zbl 1106.17040
[5] DOI: 10.1016/S0034-4877(74)80003-0 · Zbl 0325.22016
[6] Burde D., J. Lie Theory 9 pp 193– (1999)
[7] Burde D., Commun. Algebra 33 pp 1259– (2005) · Zbl 1126.17011
[8] Burde D., J. Algebra 214 pp 729– (1999) · Zbl 0932.17005
[9] Campoamor-Stursberg R., Algebras, Groups Geom. 19 pp 385– (2002)
[10] Campoamor-Stursberg R., Acta Phys. Pol. B 34 pp 3901– (2003)
[11] Carles R., J. Algebra 91 pp 53– (1984) · Zbl 0546.17006
[12] DOI: 10.1063/1.1665953 · Zbl 0244.17003
[13] DOI: 10.1063/1.529154 · Zbl 0746.17014
[14] DOI: 10.1088/0305-4470/29/14/025 · Zbl 0899.17021
[15] DOI: 10.1088/0305-4470/24/3/012 · Zbl 0731.17001
[16] DOI: 10.1088/0305-4470/39/29/026 · Zbl 1101.81063
[17] DOI: 10.1063/1.1664494 · Zbl 0162.58702
[18] Doebner H. D., Nuovo Cimento A 49 pp 306– (1967) · Zbl 0144.46201
[19] Fialowski, A. and de Montigny, M. ”On deformations and contractions of Lie algebras,” SIGMA2, Paper No. 048, 10 pages 2006. · Zbl 1137.17020
[20] Fialowski A., Commun. Algebra 18 pp 4121– (1990)
[21] DOI: 10.2307/1970484 · Zbl 0123.03101
[22] Gilmore R., Lie Groups, Lie Algebras, and Some of Their Applications (1974) · Zbl 0279.22001
[23] Gorbatsevich V. V., Algebra Anal. 5 pp 100– (1993)
[24] Gorbatsevich V. V., St. Petersbg. Math. J. 5 pp 505– (1994)
[25] Gorbatsevich V. V., Izv. Vyssh. Uchebn. Zaved., Mat. 10 pp 19– (1991)
[26] Gorbatsevich V. V., Sib. Math. J. 39 pp 872– (1998) · Zbl 0919.17007
[27] Goze M., Nilpotent Lie Algebras (1996) · Zbl 0845.17012
[28] Grunewald F., J. Algebra 162 pp 210– (1993) · Zbl 0799.17007
[29] Grunewald F., J. Algebra 112 pp 315– (1988) · Zbl 0638.17005
[30] Havlicek M., J. Nonlinear Math. Phys. 11 pp 37– (2004) · Zbl 1362.17028
[31] Hegerfeldt G. C., Nuovo Cimento A 51 pp 439– (1967) · Zbl 0161.23701
[32] Hermann R., Lie Groups for Physicists (1966) · Zbl 0135.06901
[33] DOI: 10.1088/0305-4470/33/28/307 · Zbl 0973.37046
[34] DOI: 10.1016/0003-4916(69)90323-6
[35] DOI: 10.1063/1.523881 · Zbl 0387.17003
[36] Inönü E., Lectures Istanbul Summer School Theoretical Physics, in: Group Theoretical Concepts and Methods in Elementary Particle Physics pp 391– (1962)
[37] DOI: 10.1073/pnas.40.2.119 · Zbl 0055.02102
[38] DOI: 10.1073/pnas.39.6.510 · Zbl 0050.02601
[39] DOI: 10.1088/0305-4470/34/3/314 · Zbl 1058.81031
[40] DOI: 10.1088/0305-4470/34/3/314 · Zbl 1058.81031
[41] DOI: 10.1088/0305-4470/34/3/314 · Zbl 1058.81031
[42] Jacobson N., Lie Algebras (1955)
[43] Kirillov A. A., Some problems in modern analysis pp 42– (1984)
[44] Kirillov A. A., Am. Math. Soc. Transl. 137 pp 21– (1987)
[45] Kraft H., Geomatrische Methoden in der Invar lantentheorie (1984)
[46] DOI: 10.1016/S0926-2245(02)00146-8 · Zbl 1022.22019
[47] DOI: 10.1088/0305-4470/28/13/023 · Zbl 0858.17004
[48] DOI: 10.1088/0305-4470/27/4/017 · Zbl 0835.17005
[49] DOI: 10.1063/1.1705338 · Zbl 0175.24803
[50] Lõhmus Ja. H., Proceedings of the Second Summer School on the Problems of the Theory of Elementary Particles (Otepää, 1967), Part IV pp 3– (1969)
[51] Lõhmus J., Hadronic J. 20 pp 361– (1997)
[52] DOI: 10.1007/BF01645690 · Zbl 0236.22021
[53] DOI: 10.1088/0305-4470/24/10/014 · Zbl 0751.17025
[54] Mubarakzyanov G. M., Izv. Vyssh. Uchebn. Zaved., Mat. 1 (32) pp 114– (1963)
[55] Mubarakzyanov G. M., Izv. Vyssh. Uchebn. Zaved., Mat. 3 (34) pp 99– (1963)
[56] Neretin Yu. A., Izv. Akad. Nauk SSSR, Ser. Mat. 51 pp 306– (1987) · Zbl 0641.17012
[57] Neretin Yu. A., Math. USSR, Izv. 30 pp 283– (1988) · Zbl 0641.17012
[58] Onishchik A. L., Lie Groups and Lie Algebras III: Structure of Lie Groups and Lie Algebras 41 (1994) · Zbl 0797.22001
[59] Patera J., AIP Conf. Proc. 266 pp 46– (1992)
[60] DOI: 10.1063/1.523441 · Zbl 0412.17007
[61] DOI: 10.1016/0024-3795(90)90251-7 · Zbl 0718.17010
[62] DOI: 10.1063/1.522992 · Zbl 0357.17004
[63] Pogosyan G., Phys. Part. Nucl. 33 pp 235– (2002)
[64] DOI: 10.1088/0305-4470/36/26/309 · Zbl 1040.17021
[65] DOI: 10.1063/1.1724208 · Zbl 0098.25804
[66] Seeley C., Commun. Algebra 18 pp 3493– (1990) · Zbl 0709.17006
[67] DOI: 10.1215/S0012-7094-51-01817-0 · Zbl 0045.38601
[68] Sharp, W. T.Racah Algebra and the Contraction of GroupsReport No. AECL-1098, CRT-935 (Atomic Energy of Canada Limited, Chalk River, 1960).
[69] Vergne, M., thése, de 3 éme cycle, Université Paris, 1966.
[70] DOI: 10.1063/1.529107 · Zbl 0751.17004
[71] Weimar-Woods E., Rev. Math. Phys. 12 pp 1505– (2000)
[72] DOI: 10.1063/1.530905 · Zbl 0854.17036
[73] DOI: 10.1063/1.529222 · Zbl 0751.17003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.