Arakawa, Tomoyuki Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture. (English) Zbl 1112.17026 Duke Math. J. 130, No. 3, 435-478 (2005). The author studies the representation theory of the \(\mathcal{W}\) algebra \(\mathcal{W}_k(\mathfrak{g},f)\) where \(\mathfrak{g}\) is a simple finite-dimensional Lie superalgebra, \(f\) is its principal nilpotent element and \(k\in \mathbb{C}\) is a level of the Kac-Moody affinization \(\hat{\mathfrak{g}}\) of \(\mathfrak{g}\).The structure theory of \(\mathcal{W}_k(\mathfrak{g},f)\) was developed by V. G. Kac, S.-S. Roan and M. Wakimoto in [Commun. Math. Phys. 241, 307–342 (2003; Zbl 1106.17026)]. They constructed a functor \(H\) from the category of restricted \(\hat{\mathfrak{g}}\)-modules of level \(k\) to the category of positive energy modules over \(\mathcal{W}_k(\mathfrak{g},f)\) and conjectured that if \(L(\Lambda)\) is an admissible \(\hat{\mathfrak{g}}\)-module then \(\mathcal{W}_k(\mathfrak{g},f)\)-module \(H(L(\Lambda))\) is either zero or irreducible. In the paper under review the author proves the Kac-Roan-Wakimoto conjecture. Moreover, he proves that the character of any irreducible highest weight \(\mathcal{W}_k(\mathfrak{g},f)\)-module is determined by the character of the corresponding irreducible highest weight \(\hat{\mathfrak{g}}\)-module of level \(k\). Reviewer: Dražen Adamović (Zagreb) Cited in 47 Documents MSC: 17B68 Virasoro and related algebras 17B55 Homological methods in Lie (super)algebras 17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras 17B69 Vertex operators; vertex operator algebras and related structures Keywords:W-algebras; Lie superalgebras; superconformal algebras; irreducible representations; characters Citations:Zbl 1106.17026 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] T. Arakawa, Vanishing of cohomology associated to quantized Drinfeld-Sokolov reduction , Int. Math. Res. Not. 2004 , no. 15, 730–767. · Zbl 1077.17017 · doi:10.1155/S1073792804132479 [2] -, Quantized reductions and irreducible representations of \(\W\)-algebras , preprint, 2004. [3] I. N. Bernstein, I. M. Gel’Fand, and S. I. Gel’Fand, A certain category of \(\g\)-modules , Funct. Anal. Appl. 10 (1976), no. 2, 87–92. [4] M. Bershadsky, Superconformal algebras in two dimensions with arbitrary \(N\) , Phys. Lett. B 174 (1986), 285–288. · doi:10.1016/0370-2693(86)91100-7 [5] -, Conformal field theories via Hamiltonian reduction , Comm. Math. Phys. 139 (1991), 71–82. · Zbl 0721.58046 · doi:10.1007/BF02102729 [6] V. K. Dobrev, Characters of the unitarizable highest weight modules over the \(N=2\) superconformal algebras , Phys. Lett. B 186 (1987), 43–51. · doi:10.1016/0370-2693(87)90510-7 [7] V. A. Fateev and S. L. Lykyanov [S. L. Lukyanov], The models of two-dimensional conformal quantum field theory with \(Z_n\) symmetry , Internat. J. Modern Phys. A 3 (1988), 507–520. · doi:10.1142/S0217751X88000205 [8] V. A. Fateev and A. B. Zamolodchikov, Conformal quantum field theory models in two dimensions having \(Z_3\) symmetry , Nuclear Phys. B 280 (1987), 644–660. · doi:10.1016/0550-3213(87)90166-0 [9] B. L. FeĭGin, Semi-infinite homology of Lie, Kac-Moody and Virasoro algebras (in Russian), Uspekhi Mat. Nauk 39 (1984), no. 2 (236), 195–196. · Zbl 0544.17009 [10] B. L. FeĭGin and E. V. Frenkel, Quantization of Drinfel’d-Sokolov reduction , Phys. Lett. B 246 (1990), 75–81. · Zbl 1242.17023 · doi:10.1016/0370-2693(90)91310-8 [11] -, “Affine Kac-Moody algebras at the critical level and Gel’fand-Diki\? algebras” in Infinite Analysis, Part A (Kyoto, 1991), Adv. Ser. Math. Phys. 16 , World Sci., River Edge, N.J., 1992, 197–215. · Zbl 0925.17022 · doi:10.1142/S0217751X92003781 [12] E. V. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves , Math. Surveys Monogr. 88 , Amer. Math. Soc., Providence, 2001. · Zbl 0981.17022 [13] E. V. Frenkel, V. G. Kac, and M. Wakimoto, Characters and fusion rules for \(W\)-algebras via quantized Drinfel’d-Sokolov reduction , Comm. Math. Phys. 147 (1992), 295–328. · Zbl 0768.17008 · doi:10.1007/BF02096589 [14] I. B. Frenkel and Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras , Duke Math. J. 66 (1992), 123–168. · Zbl 0848.17032 · doi:10.1215/S0012-7094-92-06604-X [15] V. G. Kac, “Representations of classical Lie superalgebras” in Differential Geometrical Methods in Mathematical Physics, II (Bonn, 1977) , Lecture Notes in Math. 676 , Springer, Berlin, 1978, 597–626. · doi:10.1007/BFb0063691 [16] -, Infinite-Dimensional Lie Algebras , 3rd ed., Cambridge Univ. Press, Cambridge, 1990. · Zbl 0716.17022 [17] V. G. Kac, S.-S. Roan, and M. Wakimoto, Quantum reduction for affine superalgebras, Comm. Math. Phys. 241 (2003), 307–342. · Zbl 1106.17026 · doi:10.1007/s00220-003-0926-1 [18] V. G. Kac and M. Wakimoto, Modular invariant representations of infinite-dimensional Lie algebras and superalgebras , Proc. Nat. Acad. Sci. U.S.A. 85 , no. 14 (1988), 4956–4960. JSTOR: · Zbl 0652.17010 · doi:10.1073/pnas.85.14.4956 [19] -, Quantum reduction amd representation theory of superconformal algebras , Adv. Math. 185 (2004), 400–458. · Zbl 1049.17025 · doi:10.1016/j.aim.2003.12.005 [20] -, Quantum reduction and characters of superconformal algebras , in preparation. [21] M. Kashiwara and T. Tanisaki, “Characters of irreducible modules with non-critical highest weights over affine Lie algebras” in Representations and Quantizations (Shanghai, 1998) , China High. Educ. Press, Beijing, 2000, 275–296. · Zbl 1002.17009 [22] T. G. Khovanova, The Korteweg-de Vries superequation connected with the Lie superalgebra of Neveu-Schwarz-\(2\) string theory , Theoret. and Math. Phys. 72 (1987), 899–904. · Zbl 0656.35136 · doi:10.1007/BF01017116 [23] E. B. Kiritsis, Character formulae and the structure of the representations of the \(N=1,\;N=2\) superconformal algebras , Internat. J. Modern Phys. A 3 (1988), no. 8, 1871–1906. · doi:10.1142/S0217751X88000795 [24] V. G. Knizhnik, Superconformal algebras in two dimensions , Theoret. and Math. Phys. 66 (1986), 68–72. [25] S. L. Lukyanov, Quantization of the Gel’fand-Dikiĭ bracket (in Russian), Funktsional. Anal. i Prilozhen. 22 (1988), no. 4, 1–10., 96; English translation in Funct. Anal. Appl. 22 (1988), no. 4, 255–262. [26] S. L. Lukyanov and V. A. Fateev, Conformally invariant models of two-dimensional quantum field theory with \(Z_n\)-symmetry, Soviet Phys. JETP 67 (1988), no. 3, 447–454. [27] Y. Matsuo, Character formula of \(\,c<1\) unitary representation of \(\,N=2\) superconformal algebra , Progr. Theoret. Phys. 77 (1987), 793–797. · doi:10.1143/PTP.77.223 [28] R. V. Moody and A. Pianzola, Lie Algebras with Triangular Decompositions , Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley, New York, 1995. · Zbl 0874.17026 [29] F. Ravanini, and S.-K. Yang, Modular invariance in \(N=2\) superconformal field theories , Phys. Lett. B 195 (1987), 202–208. · doi:10.1016/0370-2693(87)91194-4 [30] A. B. Zamolodchikov, Infinite extra symmetries in two-dimensional conformal quantum field theory , Theoret. and Math. Phys. 65 (1985), no. 3, 1205–1213. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.