Del Pino, Manuel; Dolbeault, Jean Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. (English) Zbl 1112.35310 J. Math. Pures Appl. (9) 81, No. 9, 847-875 (2002). Summary: In this paper, we find optimal constants for a special class of Gagliardo-Nirenberg type inequalities which turns out to interpolate between the classical Sobolev inequality and the Gross logarithmic Sobolev inequality. These inequalities provide an optimal decay rate (measured by entropy methods) of the intermediate asymptotics of solutions to nonlinear diffusion equations. Cited in 3 ReviewsCited in 194 Documents MSC: 35J20 Variational methods for second-order elliptic equations 35J85 Unilateral problems; variational inequalities (elliptic type) (MSC2000) 49J40 Variational inequalities 35K57 Reaction-diffusion equations 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems Keywords:Gagliardo-Nirenberg inequalities; Logarithmic Sobolev inequality; Optimal constants; Nonlinear diffusions; Entropy × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Arnold, A.; Markowich, P.; Toscani, G.; Unterreiter, A., On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26, 43-100 (2001) · Zbl 0982.35113 [2] Arnold, A.; Markowich, P.; Toscani, G.; Unterreiter, A., On generalized Csiszár-Kullback inequalities, Monatsh. Math., 131, 3, 235-253 (2000) · Zbl 1015.94003 [3] Aubin, T., Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geom., 11, 4, 573-598 (1976) · Zbl 0371.46011 [4] Bakry, D.; Coulhon, T.; Ledoux, M.; Saloff-Coste, L., Sobolev inequalities in Disguise, Indiana Univ. Math. J., 44, 4, 1033-1074 (1995) · Zbl 0857.26006 [5] Barenblatt, G. I.; Zel’dovich, Ya. B., Asymptotic properties of self-preserving solutions of equations of unsteady motion of gas through porous media, Dokl. Akad. Nauk SSSR (N.S.), 118, 671-674 (1958) · Zbl 0101.21004 [6] Beckner, W., A generalized Poincaré inequality for Gaussian measures, Proc. Amer. Math. Soc., 105, 2, 397-400 (1989) · Zbl 0677.42020 [7] Beckner, W., Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math., 138, 213-242 (1993) · Zbl 0826.58042 [8] Beckner, W., Geometric proof of Nash’s inequality, Internat. Math. Res. Notices, 2, 67-71 (1998) · Zbl 0895.35015 [9] Beckner, W., Geometric asymptotics and the logarithmic Sobolev inequality, Forum Math., 11, 105-137 (1999) · Zbl 0917.58049 [10] Biler, P.; Dolbeault, J.; Esteban, M. J., Intermediate asymptotics in \(L^1\) for general nonlinear diffusion equations, Appl. Math. Lett., 15, 1, 101-107 (2001) · Zbl 1011.35019 [11] Carrillo, J. A.; Jüngel, A.; Markowich, P. A.; Toscani, G.; Unterrreiter, A., Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., 133, 1, 1-82 (2001) · Zbl 0984.35027 [12] Carrillo, J. A.; Toscani, G., Asymptotic \(L^1\)-decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J., 49, 113-141 (2000) · Zbl 0963.35098 [13] Carlen, E. A., Superadditivity of Fisher’s information and logarithmic Sobolev inequalities, J. Funct. Anal., 101, 194-211 (1991) · Zbl 0732.60020 [14] Carlen, E.; Loss, M., Sharp constant in Nash’s inequality, Duke Math. J., Internat. Math. Res. Notices, 7, 213-215 (1993) · Zbl 0822.35018 [15] Cortázar, C.; Elgueta, M.; Felmer, P., On a semilinear elliptic problem in \(R^N\) with a non-Lipschitzian nonlinearity, Adv. Differential Equations, 1, 2, 199-218 (1996) · Zbl 0845.35031 [16] Csiszár, I., Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungar., 2, 299-318 (1967) · Zbl 0157.25802 [17] M. Del Pino, J. Dolbeault, Generalized Sobolev inequalities and asymptotic behaviour in fast diffusion and porous media problems, Preprint Ceremade 9905 (1999) 1-45; M. Del Pino, J. Dolbeault, Generalized Sobolev inequalities and asymptotic behaviour in fast diffusion and porous media problems, Preprint Ceremade 9905 (1999) 1-45 [18] Friedmann, A.; Kamin, S., The asymptotic behaviour of gas in a \(n\)-dimensional porous medium, Trans. Amer. Math. Soc., 262, 2, 551-563 (1980) · Zbl 0447.76076 [19] Gagliardo, E., Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat., 7, 102-137 (1958) · Zbl 0089.09401 [20] B. Gidas, W.-M. Ni, L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \(R^n\); B. Gidas, W.-M. Ni, L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \(R^n\) [21] Gross, L., Logarithmic Sobolev inequalities, Amer. J. Math., 97, 1061-1083 (1975) · Zbl 0318.46049 [22] Herrero, M. A.; Pierre, M., The Cauchy problem for \(u_t= Δu^m\) when \(0<m<1\), Trans. Amer. Math. Soc., 291, 1, 145-158 (1985) · Zbl 0583.35052 [23] Jüngel, A.; Markowich, P. A.; Toscani, G., Decay rates for solutions of degenerate parabolic equations, Electron. J. Differential Equations, 189-202 (2001), in: Proceedings of the USA-Chile Conference on Nonlinear Analysis (Conf. No. 06) · Zbl 0964.35085 [24] Kamin, S.; Vazquez, J.-L., Fundamental solutions and asymptotic behaviour for the \(p\)-Laplacian equation, Rev. Mat. Iberoamericana, 4, 2, 339-354 (1988) · Zbl 0699.35158 [25] Kamin, S.; Vazquez, J.-L., Asymptotic behaviour of solutions of the porous medium equation with changing sign, SIAM J. Math. Anal., 22, 1, 34-45 (1991) · Zbl 0755.35011 [26] Kullback, S., A lower bound for discrimination information in terms of variation, IEEE Trans. Inform. Theory, 13, 126-127 (1967) [27] C. Lederman, P.A. Markowich, On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass, Comm. Partial Differential Equations (2002), in print; C. Lederman, P.A. Markowich, On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass, Comm. Partial Differential Equations (2002), in print · Zbl 1024.35040 [28] Ledoux, M., The geometry of Markov diffusion generators, Ann. Fac. Sci. Toulouse VI. Sér. Math., 9, 2, 305-366 (2000) · Zbl 0980.60097 [29] Levine, H. A., An estimate for the best constant in a Sobolev inequality involving three integral norms, Ann. Mat. Pura Appl. (4), 124, 181-197 (1980) · Zbl 0442.46028 [30] Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118, 349-374 (1983) · Zbl 0527.42011 [31] Lions, P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1, 1, 45-121 (1985), and 145-201 · Zbl 0704.49006 [32] Moser, J., A Harnack’ inequality for parabolic differential equations, Comm. Pure Appl. Math., 17, 101-134 (1964) · Zbl 0149.06902 [33] Nash, J., Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80, 931-954 (1958) · Zbl 0096.06902 [34] Newman, W. I., A Lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity, I, J. Math. Phys., 25, 3120-3123 (1984) · Zbl 0583.76114 [35] Nirenberg, L., On elliptic partial differential equations, Ann. Scuola Norm. Pisa, 13, 116-162 (1959) · Zbl 0088.07601 [36] Otto, F., The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, 26, 1-2, 101-174 (2001) · Zbl 0984.35089 [37] Pucci, P.; Serrin, J., Uniqueness of ground states for quasilinear elliptic operators, Indiana Univ. Math. J., 47, 2, 501-528 (1998) · Zbl 0920.35054 [38] Ralston, J., A Lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity, II, J. Math. Phys., 25, 3124-3127 (1984) · Zbl 0583.76115 [39] Serrin, J.; Tang, M., Uniqueness for ground states of quasilinear elliptic equations, Indiana Univ. Math. J., 49, 3, 897-923 (2000) · Zbl 0979.35049 [40] Sobolev, S. L., On a theorem of functional analysis, Transl. Amer. Math. Soc. (2). Transl. Amer. Math. Soc. (2), Math. Sb. (N.S.), 4, 46, 471-497 (1938), Translated from · Zbl 0022.14803 [41] Talenti, G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), 110, 353-372 (1976) · Zbl 0353.46018 [42] Toscani, G., Sur l’inégalité logarithmique de Sobolev, C. R. Acad. Sci. Paris, Sér. I Math., 324, 689-694 (1997) · Zbl 0905.46018 [43] Toscani, G., Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation, Quart. Appl. Math., 57, 3, 521-541 (1999) · Zbl 1034.82041 [44] J.-L. Vazquez, Asymptotic behaviour for the Porous Medium Equation, I. In a Bounded Domain, the Dirichlet Problem, II. In the whole space, Notas del Curso de Doctorado “Métodos Asintóticos en Ecuaciones de Evolución”, J.E.E., to appear; J.-L. Vazquez, Asymptotic behaviour for the Porous Medium Equation, I. In a Bounded Domain, the Dirichlet Problem, II. In the whole space, Notas del Curso de Doctorado “Métodos Asintóticos en Ecuaciones de Evolución”, J.E.E., to appear [45] Weissler, F. B., Logarithmic Sobolev inequalities for the heat-diffusion semigroup, Trans. Amer. Math. Soc., 237, 255-269 (1978) · Zbl 0376.47019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.