zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A sine-cosine method for handling nonlinear wave equations. (English) Zbl 1112.35352
Summary: We establish exact solutions for nonlinear wave equations. A sine-cosine method is used for obtaining traveling wave solutions for these models with minimal algebra. The method is applied to selected physical models to illustrate the usage of our main results.

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35Q51Soliton-like equations
WorldCat.org
Full Text: DOI
References:
[1] Wadati, M.: Introduction to solitons. Pramana: journal of physics 57, No. 5/6, 841-847 (2001)
[2] Wadati, M.: The exact solution of the modified kortweg-de Vries equation. J. phys. Soc. Japan 32, 1681-1687 (1972)
[3] Wadati, M.: The modified kortweg-de Vries equation. J. phys. Soc. Japan 34, 1289-1296 (1973)
[4] Rosenau, P.; Hyman, J. M.: Solitons with finite wavelengths. Phys. rev. Lett. 70, No. 5, 564-567 (1993) · Zbl 0952.35502
[5] Rosenau, P.: Compact and noncompact dispersive structures. Physics letters A 275, No. 3, 193-203 (2000) · Zbl 1115.35365
[6] Ismail, M. S.; Taha, T.: A numerical study of compactions. Mathematics and computers in simulation 47, 519-530 (1998) · Zbl 0932.65096
[7] Wazwaz, A. M.: Partial differential equations: methods and applications. (2002) · Zbl 1079.35001
[8] Wazwaz, A. M.: New solitary-wave special solutions with compact support for the nonlinear dispersive $K(m, n)$ equations. Chaos, solitons and fractals 13, No. 2, 321-330 (2002) · Zbl 1028.35131
[9] Wazwaz, A. M.: Exact specific solutions with solitary patterns for the nonlinear dispersive $K(m, n)$ equations. Chaos, solitons and fractals 13, No. 1, 161-170 (2001) · Zbl 1027.35115
[10] Wazwaz, A. M.: General solutions for the focusing branch of the nonlinear dispersive $K(n, n)$ equations in higher dimensional spaces. Appl. math. Comput. 133, No. 2/3, 213-227 (2002) · Zbl 1027.35117
[11] Wazwaz, A. M.: General solutions with solitary patterns for the defocusing branch of the nonlinear dispersive $K(n, n)$ equations in higher dimensional spaces. Appl. math. Comput. 133, No. 2/3, 229-244 (2002) · Zbl 1027.35118
[12] Wazwaz, A. M.: A study of nonlinear dispersive equations with solitary-wave solutions having compact support. Mathematics and computers in simulation 56, 269-276 (2001) · Zbl 0999.65109
[13] Wazwaz, A. M.: Dispersive structures for variants of the $K(n, n)$ and the KP equations. Chaos, solitons and fractals 13, No. 5, 1053-1062 (2002) · Zbl 0997.35083
[14] Wazwaz, A. M.: Compactions and solitary patterns structures for variants of the KdV and the KP equations. Appl. math. Comput. 139, No. 1, 37-54 (2003) · Zbl 1029.35200
[15] Wazwaz, A. M.: Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method. Chaos, solitons and fractals 12, No. 8, 1549-1556 (2001) · Zbl 1022.35051
[16] Wazwaz, A. M.: A computational approach to soliton solutions of the Kadomtsev-petviashili equation. Appl. math. Comput. 123, No. 2, 205-217 (2001) · Zbl 1024.65098
[17] Wazwaz, A. M.: A first course in integral equations. (1997) · Zbl 0924.45001
[18] Adomian, G.: Solving frontier problems of physics: the decomposition method. (1994) · Zbl 0802.65122
[19] Adomian, G.: A review of the decomposition method in applied mathematics. J. math. Anal. appl. 135, 501-544 (1988) · Zbl 0671.34053