Variational principle and Kleinian groups. (Principe variationnel et groupes Kleiniens.) (French) Zbl 1112.37019

Summary: Let \(\Gamma\) be a nonelementary Kleinian group acting on a Cartan-Hadamard manifold \(\widetilde X\); denote by \(\Lambda(\Gamma)\) the nonwandering set of the geodesic flow \((\varphi_t)\) acting on the unit tangent bundle \(T^1(\widetilde X/\Gamma)\). When \(\Gamma\) is convex cocompact (i.e., \(\Lambda(\Gamma)\) is compact), the restriction of \((\varphi_t)\) to \(\Lambda(\Gamma)\) is an Axiom A flow: therefore, by a theorem of Bowen and Ruelle, there exists a unique invariant measure on \(\Lambda(\Gamma)\) which has maximal entropy. In this paper, we study the case of an arbitrary Kleinian group \(\Gamma\). We show that there exists a measure of maximal entropy for the restriction of \((\varphi_t)\) to \(\Lambda(\Gamma)\) if and only if the Patterson-Sullivan measure is finite; furthermore when this measure is finite, it is the unique measure of maximal entropy.
By a theorem of Handel and Kitchens, the supremum of the measure-theoretic entropies equals the infimum of the entropies of the distances \(d\) on \(\Lambda(\Gamma)\); when \(\Gamma\) is geometrically finite, we show that this infimum is achieved by the Riemannian distance \(d\) on \(\Lambda(\Gamma)\).


37C40 Smooth ergodic theory, invariant measures for smooth dynamical systems
30F40 Kleinian groups (aspects of compact Riemann surfaces and uniformization)
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
37B40 Topological entropy
37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
37F30 Quasiconformal methods and Teichmüller theory, etc. (dynamical systems) (MSC2010)
Full Text: DOI Euclid


[1] A. Ancona, Exemples de surfaces hyperboliques de type divergent, de mesures de Sullivan associées finies mais non géométriquement finies , manuscrit non-publié, 1999.
[2] C. J. Bishop \et P. W. Jones, Hausdorf dimension and Kleinian groups , Acta Math. 179 (1997), 1–39. · Zbl 0921.30032
[3] M. Bourdon, Structure conforme au bord et flot géodésique d’un \(\text \rmCAT (-1)\)-espace , Enseign. Math. (2) 41 (1995), 63–102. · Zbl 0871.58069
[4] B. H. Bowditch, Geometrical finiteness with variable negative curvature , Duke Math. J. 77 (1995), 229–274. · Zbl 0877.57018
[5] R. Bowen, Topological entropy for noncompact sets , Trans. Amer. Math. Soc. 184 (1973), 125–136. · Zbl 0274.54030
[6] R. Bowen \et D. Ruelle, The ergodic theory of Axiom A flows , Invent. Math. 29 (1975), 181–202. · Zbl 0311.58010
[7] J. Cheeger \et D. G. Ebin, Comparison Theorems in Riemannian Geometry , North-Holland Math. Library 9 , North-Holland, Amsterdam, 1975. · Zbl 0309.53035
[8] K. Corlette \et A. Iozzi, Limit sets of discrete groups of isometries of exotic hyperbolic spaces , Trans. Amer. Math. Soc. 351 (1999), 1507–1530. JSTOR: · Zbl 0932.37011
[9] F. Dal’bo, J.-P. Otal \et M. Peigné, Séries de Poincaré des groupes géométriquement finis , Israel J. Math. 118 (2000), 109–124. · Zbl 0968.53023
[10] P. Eberlein, Geodesic flows on negatively curved manifolds, I , Ann. of Math. (2) 95 (1972), 492–510. JSTOR: · Zbl 0217.47304
[11] U. Hamenstädt, Dimension de Hausdorff de l’ensemble limite radial des groupes Kleiniens , prépublication, présentée de façon informelle au Séminaire de systèmes dynamiques (Orléans, France, 1999), 2000.
[12] M. Handel \et B. Kitchens, Metrics and entropy for non-compact spaces , Israel J. Math. 91 (1995), 253–271. · Zbl 0881.54021
[13] V. A. Kaïmanovitch, Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds , Ann. Inst. H. Poincaré Phys. Théor. 53 (1990), 361–393. · Zbl 0725.58026
[14] –. –. –. –., Ergodic properties of the horocycle flow and classification of Fuchsian groups , J. Dynam. Control Systems 6 (2000), 21–56. · Zbl 0988.37038
[15] F. Ledrappier \et J.-M. Strelcyn, A proof of the estimation from below in Pesin’s entropy formula , Ergodic Theory Dynam. Systems 2 (1982), 203–219. · Zbl 0533.58022
[16] F. Ledrappier \et L.-S. Young, The metric entropy of diffeomorphisms, I: Characterization of measures satsifying Pesin’s entropy formula , Ann. of Math. (2) 122 (1985), 509–539. JSTOR: · Zbl 0605.58028
[17] S. J. Patterson, The limit set of a Fuchsian group , Acta Math. 136 (1976), 241–273. · Zbl 0336.30005
[18] M. Peigné, On the Patterson-Sullivan measure of some discrete groups of isometries , Israel J. Math. 133 (2003), 77–88. · Zbl 1017.37022
[19] C. Pugh \et M. Shub, Ergodic elements of ergodic actions , Compositio Math. 23 (1971), 115–122. · Zbl 0225.28009
[20] V. A. Rohlin [Rokhlin], Lectures on the entropy theory of measure-preserving transformations , Russian Math. Surveys 22 (1967), no. 5, 1–51. · Zbl 0174.45501
[21] D. Sullivan, The density at infinity of a discrete group of hyperbolic motions , Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171–202. · Zbl 0439.30034
[22] –. –. –. –., Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups , Acta Math. 153 (1984), 259–277. · Zbl 0566.58022
[23] P. Walters, An Introduction to Ergodic Theory , Grad. Texts in Math. 79 , Springer, New York, 1982. · Zbl 0475.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.