zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bifurcation analysis for Chen’s system with delayed feedback and its application to control of chaos. (English) Zbl 1112.37303
Summary: Time-delayed feedback has been introduced as a powerful tool for control of unstable periodic orbits or control of unstable steady states. In the present paper, regarding the delay as parameter, we investigate the effect of delay on the dynamics of Chen’s system with delayed feedback. We first consider the effect of delay on the steady states, and then investigate the existence of local Hopf bifurcations. By using the normal form theory and center manifold argument, we derive the explicit formulas determining the stability, direction and other properties of bifurcating periodic solutions. Finally, we give several numerical simulations, which indicate that when the delay passes through certain critical values, chaotic oscillation is converted into a stable steady state or a stable periodic orbit.

37D45Strange attractors, chaotic dynamics
34K18Bifurcation theory of functional differential equations
37G15Bifurcations of limit cycles and periodic orbits
93C23Systems governed by functional-differential equations
Full Text: DOI
[1] Agiza, H. N.; Yassen, M. T.: Synchronization of Rössler and Chen chaotic dynamic systems using active control. Phys. lett. A. 278, 191-197 (2001) · Zbl 0972.37019
[2] Chen, G.; Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. chaos 9, 1465-1466 (1999) · Zbl 0962.37013
[3] Hassard, B.; Kazarinoff, N.; Wan, Y.: Theory and applications of Hopf bifurcation. (1981) · Zbl 0474.34002
[4] Lorenz, E. N.: Deterministic non-periodic flows. J. atmos. Sci. 20, 130-141 (1963)
[5] Li, T.; Chen, G.; Tang, Y.: On stability and bifurcation of Chen’s system. Chaos, solitons & fractals 19, 1269-1282 (2004) · Zbl 1069.34060
[6] Lü, J.; Chen, G.; Zhang, S.: Controlling in between the Lorenz and the Chen systems. Int. J. Bifurc. chaos 12, 1417-1422 (2002)
[7] Lü, J.; Zhou, T.; Zhang, S.: Chaos synchronization between linearly coupled chaotic systems. Chaos, solitons & fractals 14, 529-541 (2002) · Zbl 1067.37043
[8] Lü, J.; Zhang, T.; Chen, G.; Zhang, S.: Local bifurcations of the Chen system. Int. J. Bifurc. chaos 12, 2257-2270 (2002) · Zbl 1047.34044
[9] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos. Phys. rev. Lett. 64, No. 11, 1196-1199 (1990) · Zbl 0964.37501
[10] Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. lett. A 170, 421-428 (1992)
[11] Ruan, S.; Wei, J.: On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion. IMA J. Math. appl. Med. biol. 18, 1-52 (2001) · Zbl 0982.92008
[12] Ruan, S.; Wei, J.: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dynamics of continuous, discrete and impulsive systems 10, 863-874 (2003) · Zbl 1068.34072
[13] Ueta T, Chen G. Bifurcation and chaos in Chen’s equation. Proc IEEE Int Symp Circuits and Systems, Geneva, Switzerland, 29--31 May, 2000, vol. V. p. 505--8
[14] Ueta, T.; Chen, G.: Bifurcation analysis of Chen’s attractor. Int. J. Bifurc. chaos 10, 1917-1931 (2000) · Zbl 1090.37531
[15] Yassen, M. T.: Chaos control of Chen chaotic dynamical system. Chaos, solitons & fractals 15, 271-283 (2003) · Zbl 1038.37029
[16] Zhang, G.; Tang, K.: Circuitry implementation and synchronization of Chen’s attractor. Int. J. Bifur. chaos 12, 1423-1427 (2000)