Berkes, István; Horváth, Lajos; Kokoszka, Piotr; Shao, Qi-Man On discriminating between long-range dependence and changes in mean. (English) Zbl 1112.62085 Ann. Stat. 34, No. 3, 1140-1165 (2006). Summary: We develop a testing procedure for distinguishing between a long-range dependent time series and a weakly dependent time series with change-points in the mean. In the simplest case, under the null hypothesis the time series is weakly dependent with one change in mean at an unknown point, and under the alternative it is long-range dependent. We compute the CUSUM statistic \(T_n\), which allows us to construct an estimator \(\widehat{k}\) of a change-point. We then compute the statistic \(T_{n,1}\) based on the observations up to time \(\widehat{k}\) and the statistic \(T_{n,2}\) based on the observations after time \(\widehat{k}\). The statistic \(M_n= \max[T_{n,1},T_{n,2}]\) converges to a well-known distribution under the null, but diverges to infinity if the observations exhibit long-range dependence. The theory is illustrated by examples and an application to the returns of the Dow Jones index. Cited in 3 ReviewsCited in 45 Documents MSC: 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 62G10 Nonparametric hypothesis testing 65C60 Computational problems in statistics (MSC2010) Keywords:change-point in mean; CUSUM; long-range dependence; variance of the mean PDF BibTeX XML Cite \textit{I. Berkes} et al., Ann. Stat. 34, No. 3, 1140--1165 (2006; Zbl 1112.62085) Full Text: DOI arXiv References: [1] Adenstedt, R. (1974). On large-sample estimation for the mean of a stationary random sequence. Ann. Statist. 2 1095–1107. · Zbl 0296.62081 [2] Anderson, T. W. (1971). The Statistical Analysis of Time Series . Wiley, New York. · Zbl 0225.62108 [3] Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59 817–858. JSTOR: · Zbl 0732.62052 [4] Bai, J. (1994). Least squares estimation of a shift in linear processes. J. Time Ser. Anal. 15 453–472. · Zbl 0808.62079 [5] Bartlett, M. S. (1950). Periodogram analysis and continuous spectra. Biometrika 37 1–16. JSTOR: · Zbl 0036.21701 [6] Berkes, I. and Horváth, L. (2003). Asymptotic results for long memory LARCH sequences. Ann. Appl. Probab. 13 641–668. · Zbl 1032.62078 [7] Berkes, I., Horváth, L. and Kokoszka, P. S. (2003). GARCH processes: Structure and estimation. Bernoulli 9 201–227. · Zbl 1064.62094 [8] Berkes, I., Horváth, L., Kokoszka, P. and Shao, Q.-M. (2005). Almost sure convergence of the Bartlett estimator. Period. Math. Hungar. 51 11–25. · Zbl 1092.62030 [9] Bhattacharya, R. N., Gupta, V. K. and Waymire, E. (1983). The Hurst effect under trends. J. Appl. Probab. 20 649–662. JSTOR: · Zbl 0526.60027 [10] Bos, C., Franses, P. H. and Ooms, M. (1999). Long-memory and level shifts: Re-analyzing inflation rates. Empirical Economics 24 427–449. [11] Csörgő, M. and Horváth, L. (1997). Limit Theorems in Change-Point Analysis . Wiley, New York. · Zbl 0884.62023 [12] Csörgő, M. and Révész, P. (1981). Strong Approximations in Probability and Statistics . Academic Press, New York. · Zbl 0539.60029 [13] Diebold, F. and Inoue, A. (2001). Long memory and regime switching. J. Econometrics 105 131–159. · Zbl 1040.62109 [14] Doukhan, P., Oppenheim, G. and Taqqu, M. S., eds. (2002). Theory and Applications of Long-Range Dependence . Birkhäuser, Boston. · Zbl 1005.00017 [15] Geweke, J. and Porter-Hudak, S. (1983). The estimation and application of long memory time series models. J. Time Ser. Anal. 4 221–238. · Zbl 0534.62062 [16] Giraitis, L., Kokoszka, P. S. and Leipus, R. (2001). Testing for long memory in the presence of a general trend. J. Appl. Probab. 38 1033–1054. · Zbl 1140.62341 [17] Giraitis, L., Kokoszka, P. S., Leipus, R. and Teyssière, G. (2000). Semiparametric estimation of the intensity of long memory in conditional heteroskedasticity. Stat. Inference Stoch. Process. 3 113–128. · Zbl 1054.62104 [18] Giraitis, L., Kokoszka, P. S., Leipus, R. and Teyssière, G. (2003). Rescaled variance and related tests for long memory in volatility and levels. J. Econometrics 112 265–294. · Zbl 1027.62064 [19] Giraitis, L., Leipus, R., Robinson, P. M. and Surgailis, D. (2004). LARCH, leverage and long memory. J. Financial Econometrics 2 177–210. [20] Giraitis, L., Robinson, P. and Surgailis, D. (2000). A model for long memory conditional heteroscedasticity. Ann. Appl. Probab. 10 1002–1024. · Zbl 1084.62516 [21] Granger, C. W. J. and Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 1 15–29. · Zbl 0503.62079 [22] Grenander, U. and Rosenblatt, M. (1957). Statistical Analysis of Stationary Time Series . Wiley, New York. · Zbl 0080.12904 [23] Henry, M. and Zaffaroni, P. (2002). The long-range dependence paradigm for macroeconomics and finance. In Theory and Applications of Long-Range Dependence (P. Doukhan, G. Oppenheim and M. S. Taqqu, eds.) 417–438. Birkhäuser, Boston. · Zbl 1026.62114 [24] Heyde, C. C. and Dai, W. (1996). On the robustness to small trends of estimation based on the smoothed periodogram. J. Time Ser. Anal. 17 141–150. · Zbl 0845.62059 [25] Hosking, J. R. M. (1981). Fractional differencing. Biometrika 68 165–176. JSTOR: · Zbl 0464.62088 [26] Karagiannis, T., Faloutsos, M. and Riedi, R. (2002). Long-range dependence: Now you see it, now you don’t! In Proc. IEEE GLOBECOM 3 2165–2169. IEEE, Piscataway, NJ. [27] Kiefer, J. (1959). \(K\)-sample analogues of the Kolmogorov–Smirnov and Cramér–von Mises tests. Ann. Math. Statist. 30 420–447. · Zbl 0134.36707 [28] Krämer, W., Sibbertsen, P. and Kleiber, C. (2002). Long memory versus structural change in financial time series. Allg. Stat. Arch. 86 83–96. · Zbl 1177.91109 [29] Künsch, H. (1986). Discrimination between monotonic trends and long-range dependence. J. Appl. Probab. 23 1025–1030. JSTOR: · Zbl 0623.62085 [30] Leland, W. E., Taqqu, M. S., Willinger, W. and Wilson, D.V. (1994). On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Trans. Networking 2 1–15. [31] Lo, A. W. (1991). Long-term memory in stock market prices. Econometrica 59 1279–1313. · Zbl 0781.90023 [32] Lobato, I. and Robinson, P. M. (1998). A nonparametric test for I(0). Rev. Econom. Stud. 65 475–495. JSTOR: · Zbl 0910.90070 [33] Mandelbrot, B. B. and Wallis, J. R. (1969). Some long-run properties of geophysical records. Water Resources Research 5 321–340. [34] Mikosch, T. and Stărică, C. (1999). Change of structure in financial time series, long range dependence and the GARCH model. Technical report, Univ. Groningen. [35] Mikosch, T. and Stărică, C. (2002). Long-range dependence effects and ARCH modeling. In Theory and Applications of Long-Range Dependence (P. Doukhan, G. Oppenheim and M. S. Taqqu, eds.) 439–459. Birkhäuser, Boston. · Zbl 1026.62113 [36] Park, K. and Willinger, W., eds. (2000). Self-Similar Network Traffic and Performance Evaluation . Wiley, New York. [37] Parzen, E. (1957). On consistent estimates of the spectrum of a stationary time series. Ann. Math. Statist. 28 329–348. · Zbl 0081.14102 [38] Paxson, V. and Floyd, S. (1995). Wide area traffic: The failure of Poisson modelling. IEEE/ACM Trans. Networking 3 226–244. [39] Robinson, P. M. (1991). Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression. J. Econometrics 47 67–84. · Zbl 0734.62070 [40] Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance . Chapman and Hall, London. · Zbl 0925.60027 [41] Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics . Wiley, New York. · Zbl 1170.62365 [42] Sibbertsen, P. and Venetis, I. (2003). Distinguishing between long-range dependence and deterministic trends. SFB 475 Technical Report 16-03, Univ. Dortmund. Available at www.sfb475.uni-dortmund.de/dienst/de/index.html. [43] Vostrikova, L. Ju. (1981). Detection of “disorder” in multidimensional random processes. Soviet Math. Dokl. 24 55–59. · Zbl 0487.62072 [44] Yao, Y.-C. (1988). Estimating the number of change-points via Schwarz’ criterion. Statist. Probab. Lett. 6 181–189. · Zbl 0642.62016 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.