zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Parameter-uniform fitted mesh method for singularly perturbed delay differential equations with layer behavior. (English) Zbl 1112.65067
Summary: Boundary value problems (BVPs) for singularly perturbed differential difference equations containing delay with layer behavior are considered. There are a number of realistic models in the literature where one encounters BVPs for singularly perturbed differential difference equations with small delay, such as in variational problems in control theory and first exit time problems in modeling of activation of neurons. In some recent papers, the terms negative shift for `delay’ and positive shift for `advance’ are used. In this paper, a numerical method based on the fitted mesh approach to approximate the solution of these types of boundary value problems is presented. In this method the piecewise-uniform meshes are constructed and fitted to the boundary layer regions to adapt singular behavior of the operator in these narrow regions. Both the cases, layer on the left side boundary and layer on the right side boundary, are discussed. It is shown that the method composed of an upwind difference operator on the piecewise uniform mesh is parameter-uniform by establishing a robust error estimate. The effect of small delay on the boundary layer solution is shown by plotting the graphs of the solution for different delay values for several numerical examples. Numerical results in terms of maximum absolute error are tabulated to demonstrate the efficiency of the method.

65L10Boundary value problems for ODE (numerical methods)
65L50Mesh generation and refinement (ODE)
34K10Boundary value problems for functional-differential equations
34K26Singular perturbations of functional-differential equations
34K28Numerical approximation of solutions of functional-differential equations
65L12Finite difference methods for ODE (numerical methods)
Full Text: Link EuDML