zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A modified method for a backward heat conduction problem. (English) Zbl 1112.65090
The authors introduce a new method to consider the ill-posed problem of the backward heat conduction. Several theorems for convergence and error analysis are developed, unfortunately, asymptotic error estimate could not be proved. The developed method is illustrated by numercal experiments.

MSC:
65M30Improperly posed problems (IVP of PDE, numerical methods)
65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
65M15Error bounds (IVP of PDE)
65M12Stability and convergence of numerical methods (IVP of PDE)
35K05Heat equation
WorldCat.org
Full Text: DOI
References:
[1] Hào, D. N.: A mollification method for ill-posed problems. Numer. math. 68, 469-506 (1994) · Zbl 0817.65041
[2] Payne, L. E.: Improperly posed problems in partial differential equations. Regional conference series in applied mathematics (1975) · Zbl 0302.35003
[3] Hadamard, J.: Lectures on Cauchy problem in linear partial differential equations. (1923) · Zbl 49.0725.04
[4] Kirsch, A.: An introduction to the mathematical theory of inverse problems. (1999) · Zbl 0926.35162
[5] Lesnic, D.; Elliott, L.; Ingham, D. B.: An iterative boundary element method for solving the backward heat conduction problem using an elliptic approximation. Inverse probl. Eng. 6, 255-279 (1998)
[6] Han, H.; Ingham, D. B.; Yuan, Y.: The boundary element method for the solution of the backward heat conduction equation. J. comput. Phys. 116, 292-299 (1995) · Zbl 0821.65064
[7] Mera, N. S.; Elliott, L.; Ingham, D. B.; Lesnic, D.: An iterative boundary element method for solving the one dimensional backward heat conduction problem. Int. J. Heat mass transfer 44, 1937-1946 (2001) · Zbl 0979.80008
[8] Mera, N. S.; Elliott, L.; Ingham, D. B.: An inversion method with decreasing regularization for the backward heat conduction problem. Numer. heat transfer, part B 42, 215-230 (2002)
[9] Liu, C. -S.: Group preserving scheme for backward heat conduction problems. Int. J. Heat mass transfer 47, 2567-2576 (2004) · Zbl 1100.80005
[10] Coleman, B. D.; Duffin, R. J.; Mizel, V. J.: Instability, uniqueness and non-existence theorems for the equation ut=uxx - uxtx on a strip. Arch. rational mech. Anal. 19, 100-116 (1965) · Zbl 0292.35016
[11] Yildiz, B.; Özdemir, M.: Stability of the solution of backward heat equation on a weak compactum. Appl. math. Comput. 111, 1-6 (2000) · Zbl 1021.35041
[12] Yildiz, B.; Yetiş, H.; Sever, A.: A stability estimate on the regularized solution of the backward heat equation. Appl. math. Comput. 135, 561-567 (2003)
[13] Eldén, L.: Approximations for a Cauchy problem for the heat equation. Inverse probl. 3, 263-273 (1987) · Zbl 0645.35094
[14] Chen, P. J.; Gurtin, M. E.: On a theory of heat conduction involving two temperatures. Zamp 19, 614-627 (1968) · Zbl 0159.15103
[15] Barenblatt, G. I.; Zheltov, Iu.P.; Kochina, I. N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata). Priklad. mat. Mekh. 24, 852-864 (1960) · Zbl 0104.21702
[16] Coleman, B. D.; Noll, W.: An approximation theorem for functionals, with application in continuum mechanics. Arch. rational mech. Anal. 6, 355-370 (1960) · Zbl 0097.16403