zbMATH — the first resource for mathematics

Microstructure evolution in the equal channel angular extrusion process. (English) Zbl 1112.74358
Summary: We apply a theory of single-crystal plasticity with microstructure to the simulation of the ECAE process. The specific microstructures considered in the simulations are of the sequential lamination type. The size of the microstructure is estimated a posteriori by means of a nonlocal extension of the theory which accounts for dislocation energies. Texture evolution is calculated simply by recourse to Taylor’s hypothesis. Calculations concerned with an FCC material (Al-Cu alloy) and 90\(^\circ\) ECAE reveal a wealth of information regarding the geometry, size, and texture evolution of subgrain microstructures. The predicted sizes and textures are in good quantitative agreement with the available experimental data.

74E15 Crystalline structure
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI
[1] Asaro, R., Micromechanics of crystals and polycrystals, Adv. appl. mech., 23, 1-115, (1983)
[2] Aubry, S.; Fago, M.; Ortiz, M., A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials, Comput. methods appl. mech. engrg., 192, 26-27, 2823-2843, (2003) · Zbl 1054.74697
[3] S. Aubry, M. Ortiz, The mechanics of deformation-induced subgrain dislocation structures in metallic crystals at large strains, Proc. Roy. Soc. Lond., under review, 2003 · Zbl 1041.74506
[4] I. Beyerlein, 2003, Personal communication
[5] Beyerlein, I.J.; Lebensohn, R.A.; Tomé, C.N., Modeling texture and microstructural evolution in the equal channel angular extrusion process, Mater. sci. engrg. A, 345, 122-138, (2003)
[6] Canova, G.R.; Wenk, H.R.; Molinari, A., Deformation modeling of multiphase polycrystals: case of quartz-mica aggregate, Acta metall. mater., 40, 1519-1530, (1992)
[7] Hansen, N.; Hughes, D., Analysis of large dislocation populations in deformed metals, Phys. stat. solid. A—appl. res., 149, 1, 155-172, (1995)
[8] Hughes, D., Deformation microstructures and selected examples of their recrystallization, Surf. interface anal., 31, 7, 560-570, (2001)
[9] Hughes, D.; Hansen, N., Microstructural evolution in nickel during rolling from intermediate to large strains, Metall. trans. A—phys. metall. mater. sci., 24, 9, 2021-2037, (1993)
[10] Hughes, D.; Hansen, N., High-angle boundaries and orientation distributions at large strains, Scripta metall. mater., 33, 2, 315-321, (1995)
[11] Hughes, D.; Hansen, N., High angle boundaries formed by grain subdivision mechanisms, Acta mater., 45, 9, 3871-3886, (1997)
[12] Hughes, D.; Hansen, N., Microstructure and strength of nickel at large strains, Acta mater., 48, 11, 2985-3004, (2000)
[13] D. Hughes, N. Hansen, Graded nanostructures produced by sliding and exhibiting universal behavior, Phys. Rev. Lett. 8713 (13) (2001) 5503-+
[14] Kohn, R., The relaxation of a double-well energy, Cont. mech. thermodyn., 3, 193-236, (1991) · Zbl 0825.73029
[15] Kohn, R.; Strang, G., Optimal design and relaxation of variational problems i, ii, iii, Commun. pure appl. math., 39, 193-236, (1986), 139-182, 353-377
[16] Lebensohn, R.; Tomé, C., A self-consistent viscoplastic model-prediction of rolling textures of anisotropic polycrystals, Mater. sci. engrg. A—struct. mater. prop. microstruct. process., 175, 1-2, 71-82, (1994)
[17] Lee, E., Elastic-plastic deformation in finite strains, J. appl. mech., 36, 1, (1969) · Zbl 0179.55603
[18] Lee, J.-C.; Seok, H.-K.; Suh, J.-Y., Microstructural evolutions of the al strip prepared by cold rolling and continuous equal channel angular pressing, Acta mater., 50, 4005-4019, (2002)
[19] Müller, S., Variational models for microstructure and phase transitions, Lecture notes, vol. 2, (1998), Max Planck Institute für Mathematik in den Naturwissenschaften Leipzig, Germany
[20] Mura, T., Micromechanics of defects in solids, (1987), Kluwer Academic Publishers Boston
[21] Nye, J., Some geometrical relations in dislocated crystals, Acta metall., 1, 153-162, (1953)
[22] Ortiz, M.; Repetto, E.A., Nonconvex energy minimization and dislocation structures in ductile single crystals, J. mech. phys. solids, 47, 2, 397-462, (1999) · Zbl 0964.74012
[23] Ortiz, M.; Repetto, E.A.; Stainier, L., A theory of subgrain dislocation structures, J. mech. phys. solids, 2077-2114, (2000) · Zbl 1001.74007
[24] Ortiz, M.; Stainier, L., The variational formulation of viscoplastic constitutive updates, Comput. methods appl. mech. engrg., 171, 3-4, 419-444, (1999) · Zbl 0938.74016
[25] Piercy, G.; Cahn, R.; Cottrell, A., A study of primary and conjugate slip in crystals of alpha-brass, Acta metall., 3, 331-338, (1955)
[26] Radovitzky, R.; Ortiz, M., Error estimation and adaptive meshing in strongly nonlinear dynamic problems, Comput. methods appl. mech. engrg., 172, 1-4, 203-240, (1999) · Zbl 0957.74058
[27] Rice, J., Inelastic constitutive relations for solids: an internal-variable theory and its applications to metal plasticity, J. mech. phys. solids, 19, 433, (1971) · Zbl 0235.73002
[28] Richert, M.; Baczmanski, A.; Richert, J., Modellization of cyclic extrusion compression using elastoplastic model, Arch. metall., 45, 381-392, (2000)
[29] Saito, Y.; Utsunomiya, H.; Tsuji, N.; Sakai, T., Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (arb) process, Acta mater., 47, 579-583, (1999)
[30] Segal, V., Material processing by simple shear, Mater. sci. engrg. A, 197, 157-164, (1995)
[31] Spellucci, P., A new technique for inconsistent QP problems in the SQP method, Math. method. oper. res., 47, 355-400, (1998) · Zbl 0964.90062
[32] Belyakov, S.T.A.; Miura, H.; Kaibyshev, R., Strain-induced submicrocrystalline grains developed in austenitic stainless steel under severe warm deformation, Philos. mag. lett., 80, 711-718, (2000)
[33] Taylor, G.I., Plastic strain in metals, J. inst. metals, 62, (1938) · Zbl 0022.08604
[34] C.N. Tomé, Manual for Program POLE, 7th ed., Los Alamos National Laboratory, Los Alamos, NM, USA
[35] Valiev, R.; Krasilnikov, N.; Tsenev, N., Plastic deformation of alloys with submicro-grained structure, Mater. sci. engrg. A, 137, 35-40, (1991)
[36] S.C. Vogel, D.J. Alexander, I.J. Beyerlein, M.A.M. Bourke, D.W. Brown, B. Clausen, C.N. Tomé, B.R.V. Dreele, C. Xu, T.G. Langdon, Investigation of texture in ECAP materials using neutron diffraction, Mater. Sci. Forum, 2003
[37] Zhu, Y.T.; Lowe, T.C., Observations and issues on mechanisms of grain refinement during ECAP process, Mater. sci. engrg. A, 291, 46-53, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.