×

Optimality conditions for Henig and globally proper efficient solutions with ordering cone has empty interior. (English) Zbl 1112.90077

Summary: We consider the set-valued vector optimization problems with constraint in locally convex spaces. We present the necessary and sufficient conditions for Henig efficient solution pair, globally proper efficient solution pair and super efficient solution pair without the ordering cones having the nonempty interior.

MSC:

90C29 Multi-objective and goal programming
52A40 Inequalities and extremum problems involving convexity in convex geometry
90C46 Optimality conditions and duality in mathematical programming
90C48 Programming in abstract spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] De Araujo, A. P.; Monteiro, P. K., On programming when the positive cone has an empty interior, J. Optim. Theory Appl., 67, 395-410 (1990) · Zbl 0696.90044
[2] J.M. Borwein, A.S. Lewis, Partially finite convex programming, Research Report, Dalhousie University Halifax, NS, 1987; J.M. Borwein, A.S. Lewis, Partially finite convex programming, Research Report, Dalhousie University Halifax, NS, 1987 · Zbl 0778.90050
[3] Borwein, J. M.; Wolkowicz, H., A simple constraint qualification in infinite dimensional programming, Math. Programming, 35, 83-96 (1986) · Zbl 0597.90056
[4] Borwein, J. M.; Lewis, A. S., Partially finite convex programming, Part I: Quasi relative interiors and duality theory, Math. Programming, 57, 15-48 (1992) · Zbl 0778.90049
[5] Borwein, J. M.; Lewis, A. S., Partially finite convex programming, Part II: Explicit lattice models, Math. Programming, 57, 49-83 (1992) · Zbl 0778.90050
[6] Borwein, J. M.; Zhuang, D., Super efficiency in vector optimization, Trans. Amer. Math. Soc., 338, 105-122 (1993) · Zbl 0796.90045
[7] Corley, H. W., Existence and Lagrangian duality for maximizations of set-valued functions, J. Optim. Theory Appl., 54, 489-501 (1987) · Zbl 0595.90085
[8] Corley, H. W., Optimality conditions for maximization of set-valued functions, J. Optim. Theory Appl., 58, 1-10 (1988) · Zbl 0956.90509
[9] Fu, W. T., On strictly efficient points of a set in a normed linear spaces, J. Systems Sci. Math. Sci., 17, 324-329 (1997), (in Chinese) · Zbl 0918.46019
[10] Gätz, A.; Jahn, J., The Lagrange multiplier rule in set-valued optimization, SIAM J. Optim., 10, 331-344 (1999) · Zbl 1029.90065
[11] Gong, X. H.; Dong, H. B.; Wang, S. Y., Optimality conditions for proper efficient solutions of vector set-valued optimization, J. Math. Anal. Appl., 284, 332-350 (2003) · Zbl 1160.90649
[12] Gong, X. H., Efficiency and Henig efficiency for vector equilibrium problems, J. Optim. Theory Appl., 108, 139-154 (2001) · Zbl 1033.90119
[13] Gowda, M. S.; Teboulle, M., A comparison of constraint qualifications in infinite-dimensional convex programming, SIAM J. Control Optim., 28, 925-935 (1992) · Zbl 0713.49042
[14] Henig, M. I., Proper efficiency with respect to cones, J. Optim. Theory Appl., 36, 387-407 (1982) · Zbl 0452.90073
[15] Jahn, J., Mathematical Vector Optimization in Partially-Ordered Linear Spaces (1986), Peter Lang: Peter Lang Frankfurt am Main, Germany · Zbl 0578.90048
[16] Jameson, G., Ordered Linear Spaces, Lecture Notes in Math., vol. 141 (1970), Springer-Verlag: Springer-Verlag Berlin · Zbl 0196.13401
[17] Jeyakumar, V.; Wolkowicz, H., Generalizations of Slater’s constraint qualification for infinite convex programs, Math. Programming, 57, 85-101 (1992) · Zbl 0771.90078
[18] Li, Z. F.; Chen, G. Y., Lagrange multiplies, saddle points and duality in vector optimization of set-valued maps, J. Math. Anal. Appl., 215, 297-316 (1997) · Zbl 0893.90150
[19] Li, Z. M., The optimality condition for vector optimization of set-valued maps, J. Math. Anal. Appl., 237, 413-424 (1999) · Zbl 0946.90078
[20] Limber, M.; Goodrich, R. K., Quasi interiors, Lagrange multipliers, and \(L^p\) spectral estimation with lattice bounds, J. Optim. Theory Appl., 78, 143-161 (1993) · Zbl 0796.49028
[21] Lin, L. J., Optimization of set-valued function, J. Math. Anal. Appl., 86, 30-51 (1994) · Zbl 0987.49011
[22] Ling, C., \(K - T\) type optimality conditions of multi objective programming with set-valued maps, J. Systems Sci. Math. Sci., 20, 196-202 (2000), (in Chinese) · Zbl 0965.90046
[23] Luc, D. T., Contingent derivatives of set-valued maps and applications to vector optimization, Math. Programming, 50, 99-111 (1991) · Zbl 0718.90080
[24] Mehra, A., Super efficiency in vector optimization with nearly convex like set-valued maps, J. Math. Anal. Appl., 276, 815-832 (2002) · Zbl 1106.90375
[25] Robertson, A. P.; Robertson, W., Topological Vector Spaces (1964), Cambridge Univ. Press · Zbl 0123.30202
[26] Rong, W. D.; Wu, Y. N., Characterization of super efficiency in cone-convex-like vector optimization with set-valued maps, Math. Methods Oper. Res., 48, 247-258 (1998) · Zbl 0930.90078
[27] Song, W., Duality for vector optimization of set-valued functions, J. Math. Anal. Appl., 201, 212-225 (1996) · Zbl 0851.90110
[28] Song, W., Lagrangian duality for minimization of nonconvex multi functions, J. Optim. Theory Appl., 93, 167-182 (1997) · Zbl 0901.90161
[29] Taa, T., Set-valued derivatives of multi functions and optimality conditions, Numer. Funct. Anal. Optim., 19, 121-140 (1998) · Zbl 1009.90106
[30] Zheng, X. Y., The domination property for efficiency in locally convex spaces, J. Math. Anal. Appl., 213, 455-467 (1997) · Zbl 0907.90239
[31] Zheng, X. Y., Proper efficiency in locally convex topological vector spaces, J. Optim. Theory Appl., 94, 469-486 (1997) · Zbl 0889.90141
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.