Möhle, M. On the number of segregating sites for populations with large family sizes. (English) Zbl 1112.92046 Adv. Appl. Probab. 38, No. 3, 750-767 (2006). Summary: We present recursions for the total number, \(S_n\), of mutations in a sample of \(n\) individuals, when the underlying genealogical tree of the sample is modelled by a coalescent process with mutation rate \(r>0\). The coalescent is allowed to have simultaneous multiple collisions of ancestral lineages, which corresponds to the existence of large families in the underlying population model. For the subclass of \(\Lambda\)-coalescent processes allowing for multiple collisions, such that the measure \(\Lambda(dx)/x\) is finite, we prove that \(S_n/(nr)\) converges in distribution to a limiting variable, \(S\), characterized via an exponential integral of a certain subordinator.When the measure \(\Lambda (dx)/x^2\) is finite, the distribution of \(S\) coincides with the stationary distribution of an autoregressive process of order 1 and is uniquely determined via a stochastic fixed-point equation of the form \(S\overset \text{D} =AS+B\), with specific independent random coefficients \(A\) and \(B\). Examples are presented in which explicit representations for (the density of) \(S\) are available. We conjecture that \(S_n/E(S_n)\to 1\) in probability if the measure \(\Lambda(dx)/x\) is infinite. Cited in 19 Documents MSC: 92D15 Problems related to evolution 60H30 Applications of stochastic analysis (to PDEs, etc.) 60J27 Continuous-time Markov processes on discrete state spaces 60J20 Applications of Markov chains and discrete-time Markov processes on general state spaces (social mobility, learning theory, industrial processes, etc.) 92D10 Genetics and epigenetics 60F05 Central limit and other weak theorems Keywords:infinitely-many-sites model; multiple collisions; stochastic difference equation; total number of mutations PDFBibTeX XMLCite \textit{M. Möhle}, Adv. Appl. Probab. 38, No. 3, 750--767 (2006; Zbl 1112.92046) Full Text: DOI References: [1] Berestycki, J., Berestycki, N. and Schweinsberg, J. (2005). Small-time behavior of beta-coalescents. · Zbl 1214.60034 · doi:10.1214/07-AIHP103 [2] Berestycki, J., Berestycki, N. and Schweinsberg, J. (2006). Beta-coalescents and continuous stable random trees. · Zbl 1129.60067 · doi:10.1214/009117906000001114 [3] Bertoin, J. and Le Gall, J.-F. (2003). Stochastic flows associated to coalescent processes. Prob. Theory Relat. Fields 126 , 261–288. · Zbl 1023.92018 · doi:10.1007/s00440-003-0264-4 [4] Bertoin, J. and Yor, M. (2001). On subordinators, self-similar Markov processes and some factorizations of the exponential variable. Electron. Commun. Prob. 6 , 95–106. · Zbl 1024.60030 [5] Bolthausen, E. and Sznitman, A.-S. (1998). On Ruelle’s probability cascades and an abstract cavity method. Commun. Math. Phys. 197 , 247–276. · Zbl 0927.60071 · doi:10.1007/s002200050450 [6] Brandt, A. (1986). The stochastic equation \(Y_n+1=A_n Y_n+B_n\) with stationary coefficients. Adv. Appl. Prob. 18 , 211–220. JSTOR: · Zbl 0588.60056 · doi:10.2307/1427243 [7] Carmona, P., Petit, F. and Yor, M. (1997). On the distribution and asymptotic results for exponential functionals of Lévy processes. In Exponential Functionals and Principal Values Related to Brownian Motion , ed. M. Yor, Biblioteca de la Revista Matematica Iberoamericana, Madrid, pp. 73–121. · Zbl 0905.60056 [8] Durrett, R. and Schweinsberg, J. (2005). A coalescent model for the effect of advantageous mutations on the genealogy of a population. Stoch. Process. Appl. 115 , 1628–1657. · Zbl 1082.92031 · doi:10.1016/j.spa.2005.04.009 [9] Goldschmidt, C. and Martin, J. B. (2005). Random recursive trees and the Bolthausen–Sznitman coalescent. Electron. J. Prob. 10 , 718–745. · Zbl 1109.60060 [10] Hedgecock, D. (1994). Does variance in reproductive success limit effective population sizes of marine organisms? In Genetics and Evolution of Aquatic Organisms , ed. A. Beaumont, Chapman and Hall, London, pp. 122–134. [11] Kingman, J. F. C. (1982). The coalescent. Stoch. Process. Appl. 13 , 235–248. · Zbl 0491.60076 · doi:10.1016/0304-4149(82)90011-4 [12] Möhle, M. and Sagitov, S. (2001). A classification of coalescent processes for haploid exchangeable population models. Ann. Prob. 29 , 1547–1562. · Zbl 1013.92029 · doi:10.1214/aop/1015345761 [13] Neininger, R. and Rüschendorf, L. (2004). On the contraction method with degenerate limit equation. Ann. Prob. 32 , 2838–2856. · Zbl 1060.60005 · doi:10.1214/009117904000000171 [14] Pitman, J. (1999). Coalescents with multiple collisions. Ann. Prob. 27 , 1870–1902. · Zbl 0963.60079 · doi:10.1214/aop/1022677552 [15] Rösler, U. (1991). A limit theorem for ‘Quicksort’. RAIRO Inf. Théoret. Appl. 25 , 85–100. · Zbl 0718.68026 [16] Rösler, U. (1992). A fixed point theorem for distributions. Stoch. Process. Appl. 42 , 195–214. · Zbl 0761.60015 · doi:10.1016/0304-4149(92)90035-O [17] Rösler, U. and Rüschendorf, L. (2001). The contraction method for recursive algorithms. Algorithmica 29 , 3–33. · Zbl 0967.68166 · doi:10.1007/s004530010053 [18] Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Prob. 36 , 1116–1125. · Zbl 0962.92026 · doi:10.1239/jap/1032374759 [19] Schweinsberg, J. (2000). Coalescents with simultaneous multiple collisions. Electron. J. Prob. 5 , 1–50. · Zbl 0959.60065 [20] Vervaat, W. (1979). On a stochastic difference equation and a representation of non-negative infinitely divisible random variables. Adv. Appl. Prob. 11 , 750–783. JSTOR: · Zbl 0417.60073 · doi:10.2307/1426858 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.